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The paper considers the speed and the exactness of multi-layer feed-forward (MLFF) neural network learning 
using various learning algorithms and presentation of input data. The choise of the learning algorithm and the 
expediency of normalizing input data and its type depend on the initial sequence and the configuration of the network. 
The speed of network is determined by network configuration using different values of input data and learning 
techniques. As a result the possibility to compare the rightness degree of forecasting each variants of learning algorithm 
and to define the most preferable variant for the sequence are shown. 
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НЕКОТОРЫЕ СЛУЧАИ МОДЕЛИРОВАНИЯ MLFF СЕТЕЙ С ИСПОЛЬЗОВАНИЕМ ГРАДИЕНТНЫХ 

ОБУЧАЮЩИХ АЛГОРИТМОВ 

Микитенко Н., Седов Е. 

В представленной работе исследуются скорость и точность многослойной обучающей нейронной сети с 
прямой связью (MLFF) с использованием различных обучающих алгоритмов и представлением входных 
данных. Выбор обучающего алгоритма, целесообразности нормализации входных данных и их типа зависят от 
начальной последовательности и конфигурации сети. Скорость сети определяется конфигурацией сети с 
использованием различных значений входных данных и обучающих алгоритмов. В результате показаны 
возможности сравнения правильности предсказания каждого типа обучающего алгоритма, и определения 
наиболее предпочтительного варианта начальной последовательности.  
 
КЛЮЧЕВЫЕ СЛОВА: нейронные сети, обучающие алгоритмы, многослойные нейронные сети с прямой 
связью. 
 
 

ДЕЯКІ ВИПАДКИ МОДЕЛЮВАННЯ MLFF МЕРЕЖ З ВИКРИСТАННЯМ ГРАДІЄНТНИХ 
НАВЧАЮЧИХ АЛГОРИТМІВ 

Микитенко Н., Сєдов Є. 

В даній роботі досліджуються швидкість і точність багатошарової навчальної нейронної мережі з прямим 
зв'язком (MLFF) з використанням різних навчаючих алгоритмів та поданням вхідних даних. Вибір навчаючого 
алгоритму, доцільності нормалізації вхідних даних та їх типу залежать від початкової послідовності і 
конфігурації мережі. Швидкість мережі визначається конфігурацією мережі з використанням різних значень 
вхідних даних і навчальних алгоритмів. В результаті показані можливості порівняння правильності 
передбачення кожного типу навчального алгоритму, і визначення найбільш кращого варіанту початкової 
послідовності. 
 
КЛЮЧОВІ СЛОВА: нейронні мережі, навчальні алгоритми, багатошарові нейронні мережі з прямим зв'язком. 
 

 
1. Introduction. It has long been discussed that time 
series forecasting widely used in many fields of 
science. The forecasting is a result of determination of 
future values of the sequence, based on some 
mathematical model with the use of data present in the 
moment of forecasting. Forecasting of future events is 
less likely for risk decision. 

The actuality of forecasting problem is confirmed 
by the amount of the written monographs and articles 

in different magazines, for example, International 
Journal of Forecasting, Journal of Forecasting and 
others. Forecasting uses different methods, depending 
on the kind of the sequence and the final target. These 
models are widely used to produce high-quality and 
reliable forecasts.  

Time series is the well-organized sequence of 
numerical indexes that characterizes the levels of 
studied process in successive moments or time periods.  
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Time series  can be presented as ty

tCt ty S     , where t  is a trend that 

characterizes the substantial dynamics of process 
development, S  is a seasonal constituent, C  is a cyclic 
constituent, t  is a stochastic component of process, 

that represents casual vibrations and noises of process. 
Stationary time series feature is the absence of trend 
and periodic constituent, systematic changes of 
vibrations scope and systematic changing dependences 
between the time series elements. Non-stationary time 
series feature is a presence of the above-stated 
components. 

There are many forecasting methods, each of them 
can be applied to certain kinds of sequences. The books 
and articles of different authors [1–4] describe 
forecasting experiments using linear and nonlinear 
methods, identified the advantages and disadvantages 
of each method. In [3] authors generalized results of 
the numerous researches conducted within the different 
rows (3003 rows) analysis and comparison by different 
methods (24 methods). The results are alike with the 
results of other researchers: the difficult or complex 
forecasting methods do not give the best prognoses 
comparatively with more simple; the estimation of 
forecasting quality depends on the fact, what 
description of quality is chosen by standard and 
depends on forecasting length. In [4] authors concluded 
that linear methods give better prognoses as compared 
to nonlinear one. For example, prognoses with the use 
of neural networks, in all cases appear worse than the 
prognoses with the use of autoregressive models. 
However in other sources [5] nonlinear methods, in 
particular neural networks, give better results as 
compared with linear ones.  

The neural network capacities to forecast straight 
ensue from its capacity for generalization and selection 
of the hidden dependences between input and output 
data. After teaching a network is able to predict the 
future values of the sequence on the basis of a few 
previous values or some existing presently factors. It 
should be noted that forecasting is possible when 
previous changes determine the future values. 

In [6] the need to scale the initial values of the 
sequence was described, so that they fall into the scope 
of the network. In [7] it was showed that the speed and 
the exactness of neural networks teaching for the 
forecasting tasks can depend on the type of input data 
presentation. The expediency of normalizing and its 
type depend on the initial sequence and the 
configuration of the network. In this paper we compare 
the results of forecasting time series values, where 
input data represented by one of the normalizing type, 
using different learning algorithms. 

2. Neural network structure. A neural network is an 
interconnected network of simple processing elements 
(neurons) with a different weight associated with each 
connection.  

The basic building block of a neural network is the 
neuron. The neuron consists of a propagation function 

 and an activation function , where f takes the 

output of as an argument. The propagation function 

is the weighted sum of inputs. The activation 

function can be a linear function or non-linear 
function and it determines dependence of signal on the 
neuron output from the self-weighted sum of signals on 
his entrances. Thus, a neuron can be represented in the 
general form as 

g

g

f

w))

g

f

y(x) f (g(x; . Such neurons are 

assembled in layered structure to construct the artificial 
neural network (ANN).  

Development of ANN model for any system 
involves three important issues: topology of the 
network, proper training algorithm, activation function.  

For the output units an activation function, that is 
suited to the distribution of the target values, should be 
chosen.  For binary targets the step function can be 
used.  For targets with a bounded range the sigmoid 
and tanh functions can be used, provided either scale 
the outputs to the range of the targets or scale the 
targets to the range of the output activation function. 
For targets with no known bounds, the linear activation 
function is used. 

An ANN involves an input layer and an output 
layer connected through one or more hidden layers. 
Multiple layers of neurons, usually interconnected in a 
feed-forward way, implement multi-layer feed-forward 
neural network (MLFF).  

The network learns by adjusting the 
interconnections between the layers. When the learning 
procedure is completed, a suitable output is produced at 
the output layer. The learning procedure may be 
supervised or unsupervised. In prediction problem 
supervised learning is adopted, where a desired output 
is assigned to network beforehand.  

3. Learning techniques. ANN learning is the process 
of changing the weights in the network to achieve the 
desired result. Usually neural network training is 
carried out on a sample. After learning by some 
algorithm, the network should get better and better 
respond to input values. Consider some supervised 
learning algorithms. 

Back-propagation algorithm (BPA) is an iterative 
gradient algorithm which is used to minimize the ANN 
error and the desired output. The basic idea of this 
method is to extend the error signals from the output of 
the network to its inputs in the direction opposite to the 
forward propagation of signals in normal operation. It 
is the most useful for feed-forward networks. Back-
propagation requires that the activation function, used 
by the artificial neurons, must be differentiable. 

The error function defined as    

  
p

2
i, j i i

i 1

1
E w (t y )

2 
  , 

where  is the network output,  is the target, iy it p  is 

the training set,  is the weights between i and j 

neurons. 
i, jw
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Fig. 1. MLFF neural network structure. 

 
 

Change of weights can be done after each training 
set either once after the presentation of all training 
vectors. Learning goal is to determine the neurons 
weights of each  layer of the network  to a given input 
vector to get the output values satisfying the required 
accuracy. Learning defines as  

i, j i, j i, jw w w  ,  

where i, j
i, j

E
w

w
  

 


, 0 1  is the learning rate.  

While in the back-propagation algorithm network 
weights are adjusted after each observation, in the 
Quickprop method the average gradient of the error 
surface around the training set calculated, and the 
weights are adjusted once at the end of each period. In 
the first epoch Quickprop adjusts the weights as well as 
the back-propagation algorithm. Then, changing the 
weights are computed as 

k
k

k 1 k

E(w )
w (n) w (n 1)

E(w ) E(w )


 
  k . 

  
In resilient back propagation (RPROP) changing 

the weights considered only the sign of the gradient, 
not its value 

ij ij
ij

E(w(k))
w (k) (k)sign

w
 

 
    

 , 

where sign() function returns the gradient sign. 
Gradient learning algorithms are associated with 

the Taylor series expansion of the function  in 

the neighborhood of  in the 

E(w)

w p  direction. Such 

expansion is described by 

T T1
E(w p) E(w) [g(w)] p p H(w)p ...

2
     ,    (1) 

where 
T

1 2 n

E E E
g(w) E , ,...,

w w w

   
      

is the 

gradient vector,  is the matrix of second 

derivatives (Hessian), 

H(w)

p  is the direction vector. The 

dependence (1) can be considered as an approximation 
of the function in the vicinity of point w with an 

accuracy 

E(w)

 3O h , h p . In the search for the 

minimum  the values of the direction p and the 

step h are selected in such a way that for each new 
point 

E(w)

k 1 kw w k kp  

k 1)

  performed the condition 

kE(w )E(w  . The search continues until the 

norm of the gradient reaches the desired accuracy or 
until it exceeds maximum calculation time. 

Steepest descent method is the gradient method, in 
which the decomposition of the function in a Taylor 
series can restrict its linear approximation. The 
direction vector is determined as 

k kp g(w ) . 

Changing the weights as follows 

k k kw p k k 1(w w )     , 

where   is the momentum coefficient in [0, 1] 
interval. The higher value of  , the more important 
momentum for the selection of weights. Selection 
momentum requires many experiments.  

Using the Levenberg-Marquardt algorithm the 
Hessian replaced by the value of , which is 

calculated on the basis of a regularization factor. 
Represent the target function to the existence of a 
single training set  

G(w)

M
2

i
i 1

1
E(w)

id )

[e (w)]
2 
 ,    (2) 

where . Denote: i ie (y (w) 

1 1 1

1 2 n
1

2

M

e (w)

e (w)

...

e (w)

 
 
 
 
 
 

2 2 2

1 2 n

M M M

1 2 n

e e e
...

w w w

e e e
...

w w w

... ... ... ...

e e e
...

w w w

   
    
   
    
 
 
   
    

e(w) , J(w)  . 

The gradient vector and the approximated Hessian 
matrix, corresponding to (2), are defined as 
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k

T

T

g(w) [J(w)] e(w) ,

G(w) [J(w)] J(w) R(w) ,



 
 

where  identifies the components of the Hessian, 

including derivatives relative to w. So the direction 
vector is determined as 

R(w)

1
k kp [G(w )] g(w ) . 

When choosing the minimizing direction in 
conjugate gradient algorithm Hessian is not used. The 
direction kp  is chosen such that it is orthogonal and 

conjugate to all previous directions 0 1 k 1p , p ,..., p   

k k k 1 k 1p g p    , 

where is the gradient vector, kg g(w k ) k 1   is the 

conjugate coefficient.   
In this paper we compare the results of forecasting 

time series values using the considered learning 
algorithms: 

 back-propagation algorithm; 
 Quickprop algorithm;  
 steepest descent algorithm; 
 conjugate gradient algorithm. 
After experiments it is possible to determine which 

algorithm performed the best training.  

4. Standardizing input data. Standardizing either 
input or target variables tends to make the training 
process better behaved by improving the numerical 
condition of the optimization problem and ensuring 
that various default values involved in initialization and 
termination are appropriate. Standardizing targets can 
also affect the objective function. 

In theory normalizing or standardizing inputs are 
not necessary. The reason is that any rescaling of an 
input vector can be effectively undone by changing the 
corresponding weights, leaving the exact same outputs 
as had before. However, there are a variety of practical 
reasons why standardizing the inputs can make training 
faster and reduce the chances of getting stuck in local 
optima. Also, weight decay can be done more 
conveniently with standardized inputs.   

In this paper the input sequence for neural network 
learning presents in such ways: sequence becomes a 
sequence of bits transferring each number; sequence 
becomes a sequence of bits by transferring each 
number in Gray code. 

In [7] we showed that for stationary time series 
with a small dispersion of values in the case of MLFF 
networks with supervised learning for forecasting the 
sequence can be represented by binary or Gray code. 
Using this presentation of sequence elements we can 
compare the learning speed and accuracy of the 
network’s using different learning techniques.  

When using binary code, the data present as a 
combination of two characters, numbered 0 and 1. In 
general, the number of combinations n-bit binary code 
is equal to the number of placements with repetition 

n n
2A(2, n) A 2  , where  is the number 

of codes, n is the number of binary digits. 

n
2A(2, n) A

To convert the original sequence of decimal 
numbers in a sequence of binary numbers, you must 
first present each number in the form of a nonnegative 
decimal number. Fractional part is removed by 
multiplying each of the original sequence by 10 , 
where n is maximum number of digits in the fractional 
part of numbers. Nonnegativity is achieved by adding a 
module to a minimum number of initial sequence 
numbers. These transformations are possible, because 
they do not affect the learning network. 

*n

Once obtained a nonnegative integer sequence, 
each number in the sequence can be represented in 
binary. The number of bits in each of those should be 
the same. To do this, choose the maximum order, 
convert it to binary code and fix the number of received 
bits. Since the network can predict the numbers are 
larger than input, one more bit should be reserved in 
binary form for such forecasts. As a result, we obtain 
the maximum number of bits for each binary 
representation of the number.  

But this code is not without drawbacks. The main 
disadvantage is that adjacent numbers differ in the 
values of a few bits that could hamper operation. To 
avoid this problem it is better to use an encoding where 
adjacent numbers differ fewer positions in the ideal 
value of one bit. This source code is Gray. 

The Gray code may be got out of the binary 
representation, so you need to perform all operations to 
the original sequence for the binary case. Gray code 
can easily be obtained from the binary number by 
bitwise XOR with the same numbers, shifted right by 
one bit. Thus, i-th bit Gray code Gi is expressed 
through the binary Bi as , where i i iG B B   1   – 

XOR operation; the bits are numbered from right to 
left, starting with the youngest. 

5. Computer experiment. For the research it was 
examined several types of neural network structures. 
The better results have been shown by network with 
two of the hidden layers of 30 and 15 neurons in the 
layer. For the network learning each of four considered 
training methods has been used.  

For learning the step activation function was used. 
The step function may be used because the output takes 
on values of 0 or 1. The threshold of the function is 0,5. 
At the use of step function until the self-weighted 
signal on the neuron entrance does not arrive to some 
level T — a signal on an output is equal to the zero. As 
soon as a signal on the neuron entrance exceeds the 
indicated level — an output signal saltatory changes to 
one.  

To form the training set, the sliding window 
method was chosen. The sliding window method 
constructs a window classifier hw that maps an input 
window of width w into an individual output value y. 
The window classifier hw is trained by converting each 
sequential training example (xi,yi,) into windows and 
then applying a standard supervised learning algorithm. 
A new sequence x is classified by converting it to 
windows, applying hw to predict each yt and then 
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Fig. 3. Comparison of the error values with various input 
data with Quickprop. 

concatenating the yt's to form the predicted sequence y. 
The obvious advantage of this sliding window method 
is that permits any classical supervised learning 
algorithm to be applied. 

 
Table 3.  Network errors using steepest descent algorithm 

Consider a sequence, which values variation is in a 
range [25, 5...103, 5]. 

Parameters of the network training are the same for 
all cases: learn rate=0.1; momentum = 0.6; window 
width = 3.  

Determine a speed of network learning with this 
network configuration using the different values of 
input data and learning techniques. As a result, it is 
possible to compare the rightness degree of forecast of 
each variants of learning algorithm and to define the 
most preferable variant for the sequence. 
 
Table 1. Network errors with BPA algorithm 

Network error 
Iterations 

Gray code Binary code 
1000 0,123371 0,131531 
2000 0,113918 0,128573 
3000 0,106972 0,125269 
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Fig. 2. Comparison of the error values with various input 

data with BPA. 
 
 
Table 2.  Network errors with Quickprop algorithm 

Network error 
Iterations 

Gray code Binary code 
1000 0,216747 0,160975 
2000 0,178947 0,14095 
3000 0,128734 0,139837 

Network error 
Iterations 

Gray code Binary code 
1000 0,109043 0,123454 
2000 0,100348 0,110232 
3000 0,084501 0,109423 
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Fig. 4. Comparison of the error values with various input 

data with steepest descent. 
 
 
Table 4.  Network errors using conjugate gradient 
algorithm 

Network error 
Iterations 

Gray code Binary code 
1000 0,108043 0,119234 
2000 0,109262 0,111098 
3000 0,087434 0,110665 
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Fig. 5. Comparison of the error values with various 
input data with conjugate gradient. 

 
6. Conclusions. Each of the tables shows the value of 
the neural network error using one of considered 
learning algorithm during the passage of a certain 
number of iterations for input data, which translated 
into binary and Gray code to the neural network. The 
maximum number of iterations is 3000. Charts display 
the value of a network error when passing iterations.  

The following conclusions can be driven: 
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 we have implemented the program for neural 
network learning with different learning algorithms, 
that use different strategies for speedy promotion to the 
minimum; 

 we have found that the use of different 
learning algorithms, that use different strategies for 
speedy promotion to the minimum, does not much 
affect the final prediction result for a sequence that is 
represent in the binary and Gray code. The prefer 
algorithm should be chosen depending on the task and 
the various sets of input data, because the behavior of 
the algorithms affect a large amount of initial data, 
their redundancy, fault and other. Well trained network 
using the steepest descent method and conjugate 
gradient algorithm. Strategy of choosing momentum in 
the steepest descent method is key. In conjugate 
gradient algorithm the key is conjugate coefficient, 
which contains information about the previous 
directions; 

 it follows, that in research of such problems, 
a simple algorithm in terms of computing can be 
chosen.  
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