

MATHEMATICS

105

UDC 004.032.26

SOME CASES OF MLFF NETWORKS MODELING USING GRADIENT LEARNING
ALGORITHMS

1Mykytenko N., 2Sedov Ye.
1,2South Ukrainian National Pedagogical University, Odessa, Ukraine

The paper considers the speed and the exactness of multi-layer feed-forward (MLFF) neural network learning
using various learning algorithms and presentation of input data. The choise of the learning algorithm and the
expediency of normalizing input data and its type depend on the initial sequence and the configuration of the network.
The speed of network is determined by network configuration using different values of input data and learning
techniques. As a result the possibility to compare the rightness degree of forecasting each variants of learning algorithm
and to define the most preferable variant for the sequence are shown.

KEY WORDS: neural networks, learning algorithms, multi-layer feed-forward neural network.

НЕКОТОРЫЕ СЛУЧАИ МОДЕЛИРОВАНИЯ MLFF СЕТЕЙ С ИСПОЛЬЗОВАНИЕМ ГРАДИЕНТНЫХ

ОБУЧАЮЩИХ АЛГОРИТМОВ

Микитенко Н., Седов Е.

В представленной работе исследуются скорость и точность многослойной обучающей нейронной сети с
прямой связью (MLFF) с использованием различных обучающих алгоритмов и представлением входных
данных. Выбор обучающего алгоритма, целесообразности нормализации входных данных и их типа зависят от
начальной последовательности и конфигурации сети. Скорость сети определяется конфигурацией сети с
использованием различных значений входных данных и обучающих алгоритмов. В результате показаны
возможности сравнения правильности предсказания каждого типа обучающего алгоритма, и определения
наиболее предпочтительного варианта начальной последовательности.

КЛЮЧЕВЫЕ СЛОВА: нейронные сети, обучающие алгоритмы, многослойные нейронные сети с прямой
связью.

ДЕЯКІ ВИПАДКИ МОДЕЛЮВАННЯ MLFF МЕРЕЖ З ВИКРИСТАННЯМ ГРАДІЄНТНИХ
НАВЧАЮЧИХ АЛГОРИТМІВ

Микитенко Н., Сєдов Є.

В даній роботі досліджуються швидкість і точність багатошарової навчальної нейронної мережі з прямим
зв'язком (MLFF) з використанням різних навчаючих алгоритмів та поданням вхідних даних. Вибір навчаючого
алгоритму, доцільності нормалізації вхідних даних та їх типу залежать від початкової послідовності і
конфігурації мережі. Швидкість мережі визначається конфігурацією мережі з використанням різних значень
вхідних даних і навчальних алгоритмів. В результаті показані можливості порівняння правильності
передбачення кожного типу навчального алгоритму, і визначення найбільш кращого варіанту початкової
послідовності.

КЛЮЧОВІ СЛОВА: нейронні мережі, навчальні алгоритми, багатошарові нейронні мережі з прямим зв'язком.

1. Introduction. It has long been discussed that time
series forecasting widely used in many fields of
science. The forecasting is a result of determination of
future values of the sequence, based on some
mathematical model with the use of data present in the
moment of forecasting. Forecasting of future events is
less likely for risk decision.

The actuality of forecasting problem is confirmed
by the amount of the written monographs and articles

in different magazines, for example, International
Journal of Forecasting, Journal of Forecasting and
others. Forecasting uses different methods, depending
on the kind of the sequence and the final target. These
models are widely used to produce high-quality and
reliable forecasts.

Time series is the well-organized sequence of
numerical indexes that characterizes the levels of
studied process in successive moments or time periods.

__
© Mykytenko N., Sedov Ye., 2014.

CONTEMPORARY PROBLEMS OF NATURAL SCIENCES. Vol.1(1), 2014.

106

Time series can be presented as ty

tCt ty S , where t is a trend that

characterizes the substantial dynamics of process
development, S is a seasonal constituent, C is a cyclic
constituent, t is a stochastic component of process,

that represents casual vibrations and noises of process.
Stationary time series feature is the absence of trend
and periodic constituent, systematic changes of
vibrations scope and systematic changing dependences
between the time series elements. Non-stationary time
series feature is a presence of the above-stated
components.

There are many forecasting methods, each of them
can be applied to certain kinds of sequences. The books
and articles of different authors [1–4] describe
forecasting experiments using linear and nonlinear
methods, identified the advantages and disadvantages
of each method. In [3] authors generalized results of
the numerous researches conducted within the different
rows (3003 rows) analysis and comparison by different
methods (24 methods). The results are alike with the
results of other researchers: the difficult or complex
forecasting methods do not give the best prognoses
comparatively with more simple; the estimation of
forecasting quality depends on the fact, what
description of quality is chosen by standard and
depends on forecasting length. In [4] authors concluded
that linear methods give better prognoses as compared
to nonlinear one. For example, prognoses with the use
of neural networks, in all cases appear worse than the
prognoses with the use of autoregressive models.
However in other sources [5] nonlinear methods, in
particular neural networks, give better results as
compared with linear ones.

The neural network capacities to forecast straight
ensue from its capacity for generalization and selection
of the hidden dependences between input and output
data. After teaching a network is able to predict the
future values of the sequence on the basis of a few
previous values or some existing presently factors. It
should be noted that forecasting is possible when
previous changes determine the future values.

In [6] the need to scale the initial values of the
sequence was described, so that they fall into the scope
of the network. In [7] it was showed that the speed and
the exactness of neural networks teaching for the
forecasting tasks can depend on the type of input data
presentation. The expediency of normalizing and its
type depend on the initial sequence and the
configuration of the network. In this paper we compare
the results of forecasting time series values, where
input data represented by one of the normalizing type,
using different learning algorithms.

2. Neural network structure. A neural network is an
interconnected network of simple processing elements
(neurons) with a different weight associated with each
connection.

The basic building block of a neural network is the
neuron. The neuron consists of a propagation function

 and an activation function , where f takes the

output of as an argument. The propagation function

is the weighted sum of inputs. The activation

function can be a linear function or non-linear
function and it determines dependence of signal on the
neuron output from the self-weighted sum of signals on
his entrances. Thus, a neuron can be represented in the
general form as

g

g

f

w))

g

f

y(x) f (g(x; . Such neurons are

assembled in layered structure to construct the artificial
neural network (ANN).

Development of ANN model for any system
involves three important issues: topology of the
network, proper training algorithm, activation function.

For the output units an activation function, that is
suited to the distribution of the target values, should be
chosen. For binary targets the step function can be
used. For targets with a bounded range the sigmoid
and tanh functions can be used, provided either scale
the outputs to the range of the targets or scale the
targets to the range of the output activation function.
For targets with no known bounds, the linear activation
function is used.

An ANN involves an input layer and an output
layer connected through one or more hidden layers.
Multiple layers of neurons, usually interconnected in a
feed-forward way, implement multi-layer feed-forward
neural network (MLFF).

The network learns by adjusting the
interconnections between the layers. When the learning
procedure is completed, a suitable output is produced at
the output layer. The learning procedure may be
supervised or unsupervised. In prediction problem
supervised learning is adopted, where a desired output
is assigned to network beforehand.

3. Learning techniques. ANN learning is the process
of changing the weights in the network to achieve the
desired result. Usually neural network training is
carried out on a sample. After learning by some
algorithm, the network should get better and better
respond to input values. Consider some supervised
learning algorithms.

Back-propagation algorithm (BPA) is an iterative
gradient algorithm which is used to minimize the ANN
error and the desired output. The basic idea of this
method is to extend the error signals from the output of
the network to its inputs in the direction opposite to the
forward propagation of signals in normal operation. It
is the most useful for feed-forward networks. Back-
propagation requires that the activation function, used
by the artificial neurons, must be differentiable.

The error function defined as

p

2
i, j i i

i 1

1
E w (t y)

2
 ,

where is the network output, is the target, iy it p is

the training set, is the weights between i and j

neurons.
i, jw

MATHEMATICS

107

Fig. 1. MLFF neural network structure.

Change of weights can be done after each training
set either once after the presentation of all training
vectors. Learning goal is to determine the neurons
weights of each layer of the network to a given input
vector to get the output values satisfying the required
accuracy. Learning defines as

i, j i, j i, jw w w ,

where i, j
i, j

E
w

w

, 0 1 is the learning rate.

While in the back-propagation algorithm network
weights are adjusted after each observation, in the
Quickprop method the average gradient of the error
surface around the training set calculated, and the
weights are adjusted once at the end of each period. In
the first epoch Quickprop adjusts the weights as well as
the back-propagation algorithm. Then, changing the
weights are computed as

k
k

k 1 k

E(w)
w (n) w (n 1)

E(w) E(w)

 k .

In resilient back propagation (RPROP) changing

the weights considered only the sign of the gradient,
not its value

ij ij
ij

E(w(k))
w (k) (k)sign

w

 ,

where sign() function returns the gradient sign.
Gradient learning algorithms are associated with

the Taylor series expansion of the function in

the neighborhood of in the

E(w)

w p direction. Such

expansion is described by

T T1
E(w p) E(w) [g(w)] p p H(w)p ...

2
 , (1)

where
T

1 2 n

E E E
g(w) E , ,...,

w w w

is the

gradient vector, is the matrix of second

derivatives (Hessian),

H(w)

p is the direction vector. The

dependence (1) can be considered as an approximation
of the function in the vicinity of point w with an

accuracy

E(w)

 3O h , h p . In the search for the

minimum the values of the direction p and the

step h are selected in such a way that for each new
point

E(w)

k 1 kw w k kp

k 1)

 performed the condition

kE(w)E(w . The search continues until the

norm of the gradient reaches the desired accuracy or
until it exceeds maximum calculation time.

Steepest descent method is the gradient method, in
which the decomposition of the function in a Taylor
series can restrict its linear approximation. The
direction vector is determined as

k kp g(w) .

Changing the weights as follows

k k kw p k k 1(w w) ,

where is the momentum coefficient in [0, 1]
interval. The higher value of , the more important
momentum for the selection of weights. Selection
momentum requires many experiments.

Using the Levenberg-Marquardt algorithm the
Hessian replaced by the value of , which is

calculated on the basis of a regularization factor.
Represent the target function to the existence of a
single training set

G(w)

M
2

i
i 1

1
E(w)

id)

[e (w)]
2
 , (2)

where . Denote: i ie (y (w)

1 1 1

1 2 n
1

2

M

e (w)

e (w)

...

e (w)

2 2 2

1 2 n

M M M

1 2 n

e e e
...

w w w

e e e
...

w w w

...

e e e
...

w w w

e(w) , J(w) .

The gradient vector and the approximated Hessian
matrix, corresponding to (2), are defined as

CONTEMPORARY PROBLEMS OF NATURAL SCIENCES. Vol.1(1), 2014.

108

k

T

T

g(w) [J(w)] e(w) ,

G(w) [J(w)] J(w) R(w) ,

where identifies the components of the Hessian,

including derivatives relative to w. So the direction
vector is determined as

R(w)

1
k kp [G(w)] g(w) .

When choosing the minimizing direction in
conjugate gradient algorithm Hessian is not used. The
direction kp is chosen such that it is orthogonal and

conjugate to all previous directions 0 1 k 1p , p ,..., p

k k k 1 k 1p g p ,

where is the gradient vector, kg g(w k) k 1 is the

conjugate coefficient.
In this paper we compare the results of forecasting

time series values using the considered learning
algorithms:

 back-propagation algorithm;
 Quickprop algorithm;
 steepest descent algorithm;
 conjugate gradient algorithm.
After experiments it is possible to determine which

algorithm performed the best training.

4. Standardizing input data. Standardizing either
input or target variables tends to make the training
process better behaved by improving the numerical
condition of the optimization problem and ensuring
that various default values involved in initialization and
termination are appropriate. Standardizing targets can
also affect the objective function.

In theory normalizing or standardizing inputs are
not necessary. The reason is that any rescaling of an
input vector can be effectively undone by changing the
corresponding weights, leaving the exact same outputs
as had before. However, there are a variety of practical
reasons why standardizing the inputs can make training
faster and reduce the chances of getting stuck in local
optima. Also, weight decay can be done more
conveniently with standardized inputs.

In this paper the input sequence for neural network
learning presents in such ways: sequence becomes a
sequence of bits transferring each number; sequence
becomes a sequence of bits by transferring each
number in Gray code.

In [7] we showed that for stationary time series
with a small dispersion of values in the case of MLFF
networks with supervised learning for forecasting the
sequence can be represented by binary or Gray code.
Using this presentation of sequence elements we can
compare the learning speed and accuracy of the
network’s using different learning techniques.

When using binary code, the data present as a
combination of two characters, numbered 0 and 1. In
general, the number of combinations n-bit binary code
is equal to the number of placements with repetition

n n
2A(2, n) A 2 , where is the number

of codes, n is the number of binary digits.

n
2A(2, n) A

To convert the original sequence of decimal
numbers in a sequence of binary numbers, you must
first present each number in the form of a nonnegative
decimal number. Fractional part is removed by
multiplying each of the original sequence by 10 ,
where n is maximum number of digits in the fractional
part of numbers. Nonnegativity is achieved by adding a
module to a minimum number of initial sequence
numbers. These transformations are possible, because
they do not affect the learning network.

*n

Once obtained a nonnegative integer sequence,
each number in the sequence can be represented in
binary. The number of bits in each of those should be
the same. To do this, choose the maximum order,
convert it to binary code and fix the number of received
bits. Since the network can predict the numbers are
larger than input, one more bit should be reserved in
binary form for such forecasts. As a result, we obtain
the maximum number of bits for each binary
representation of the number.

But this code is not without drawbacks. The main
disadvantage is that adjacent numbers differ in the
values of a few bits that could hamper operation. To
avoid this problem it is better to use an encoding where
adjacent numbers differ fewer positions in the ideal
value of one bit. This source code is Gray.

The Gray code may be got out of the binary
representation, so you need to perform all operations to
the original sequence for the binary case. Gray code
can easily be obtained from the binary number by
bitwise XOR with the same numbers, shifted right by
one bit. Thus, i-th bit Gray code Gi is expressed
through the binary Bi as , where i i iG B B 1 –

XOR operation; the bits are numbered from right to
left, starting with the youngest.

5. Computer experiment. For the research it was
examined several types of neural network structures.
The better results have been shown by network with
two of the hidden layers of 30 and 15 neurons in the
layer. For the network learning each of four considered
training methods has been used.

For learning the step activation function was used.
The step function may be used because the output takes
on values of 0 or 1. The threshold of the function is 0,5.
At the use of step function until the self-weighted
signal on the neuron entrance does not arrive to some
level T — a signal on an output is equal to the zero. As
soon as a signal on the neuron entrance exceeds the
indicated level — an output signal saltatory changes to
one.

To form the training set, the sliding window
method was chosen. The sliding window method
constructs a window classifier hw that maps an input
window of width w into an individual output value y.
The window classifier hw is trained by converting each
sequential training example (xi,yi,) into windows and
then applying a standard supervised learning algorithm.
A new sequence x is classified by converting it to
windows, applying hw to predict each yt and then

MATHEMATICS

109

Fig. 3. Comparison of the error values with various input
data with Quickprop.

concatenating the yt's to form the predicted sequence y.
The obvious advantage of this sliding window method
is that permits any classical supervised learning
algorithm to be applied.

Table 3. Network errors using steepest descent algorithm

Consider a sequence, which values variation is in a
range [25, 5...103, 5].

Parameters of the network training are the same for
all cases: learn rate=0.1; momentum = 0.6; window
width = 3.

Determine a speed of network learning with this
network configuration using the different values of
input data and learning techniques. As a result, it is
possible to compare the rightness degree of forecast of
each variants of learning algorithm and to define the
most preferable variant for the sequence.

Table 1. Network errors with BPA algorithm

Network error
Iterations

Gray code Binary code
1000 0,123371 0,131531
2000 0,113918 0,128573
3000 0,106972 0,125269

0
0,02
0,04
0,06
0,08
0,1

0,12
0,14

1000 2000 3000
iterations

n
et

w
o

rk
 e

rr
o

r

Gray code

Binary code

Fig. 2. Comparison of the error values with various input

data with BPA.

Table 2. Network errors with Quickprop algorithm

Network error
Iterations

Gray code Binary code
1000 0,216747 0,160975
2000 0,178947 0,14095
3000 0,128734 0,139837

Network error
Iterations

Gray code Binary code
1000 0,109043 0,123454
2000 0,100348 0,110232
3000 0,084501 0,109423

0
0,02
0,04
0,06
0,08
0,1

0,12
0,14

1000 2000 3000

iterations
n

et
w

o
rk

 e
rr

o
r

Gray code

Binary code

Fig. 4. Comparison of the error values with various input

data with steepest descent.

Table 4. Network errors using conjugate gradient
algorithm

Network error
Iterations

Gray code Binary code
1000 0,108043 0,119234
2000 0,109262 0,111098
3000 0,087434 0,110665

0
0,02
0,04
0,06
0,08
0,1

0,12
0,14

1000 2000 3000

iterations

n
et

w
o

rk
 e

rr
o

r

Gray code

Binary code

0

0,05

0,1

0,15

0,2

0,25

1000 2000 3000

iterations

n
et

w
o

rk
 e

rr
o

r

Gray code

Binary code

Fig. 5. Comparison of the error values with various
input data with conjugate gradient.

6. Conclusions. Each of the tables shows the value of
the neural network error using one of considered
learning algorithm during the passage of a certain
number of iterations for input data, which translated
into binary and Gray code to the neural network. The
maximum number of iterations is 3000. Charts display
the value of a network error when passing iterations.

The following conclusions can be driven:

CONTEMPORARY PROBLEMS OF NATURAL SCIENCES. Vol.1(1), 2014.

110

 we have implemented the program for neural
network learning with different learning algorithms,
that use different strategies for speedy promotion to the
minimum;

 we have found that the use of different
learning algorithms, that use different strategies for
speedy promotion to the minimum, does not much
affect the final prediction result for a sequence that is
represent in the binary and Gray code. The prefer
algorithm should be chosen depending on the task and
the various sets of input data, because the behavior of
the algorithms affect a large amount of initial data,
their redundancy, fault and other. Well trained network
using the steepest descent method and conjugate
gradient algorithm. Strategy of choosing momentum in
the steepest descent method is key. In conjugate
gradient algorithm the key is conjugate coefficient,
which contains information about the previous
directions;

 it follows, that in research of such problems,
a simple algorithm in terms of computing can be
chosen.

REFERENCES

1. Hank J.E., Wichern D.W., Reitsch A.G. Business
forecasting. 7th edition Upper Saddle River, Pearson
Prentice Hall, NJ. – 2009. – 498 p.
2. Thomakos D.D., Nave G.J. ARIMA,
Nonparametric Transfer Function and VAR Models: a
Comparison of Forecasting Performance Intern. J.
Forecast. – 2004. – N 20. – P. 53–67.
3. Makridakis S., Hibon M. The M3_Competition:
Results. Conclusions and Implications Intern. J.
Forecast. – 2000. – N 16. – P. 451–476.
4. Stock J.H., Watson M.W. A Comparison of Linear
and Non-Linear Univariate Models for Forecasting
Macroeconomic Time Series NBER WP. No. 6607. –
1998.
5. Baestaens D., Van den Bergh W. Neural Network
Solutions for Trading in Financial Market. Pitman
Publ. Inc. Marshfield, MA, USA. – 1994. – 288 p.
6. Callan R. The essence of neural network. Prentice
Hall Europe. – 1999. – 248 p.
7. Mykytenko N., Sedov Ye. Some particular cases
of MLFF networks modelling Copmputer Model. and
New Technol. – 2011. – v. 15, N 4. – P.28–34.
8. Haykin S. Neural Networks: a Comprehensive
Foundation. 2nd ed. Prentice-Hall, Englewood Cliffs,
NJ. – 1998. – 842 p.
9. Heaton J. Introduction to Neural Networks for C#,
2nd ed. Heaton Research, Incorp. – 2008. – 428 p.

