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Let 7 be a multiplicative function such that z(& (p?)= 1. In the paper the generalizations of 7. over
k p k \P pap g Kk
dy--dy=a
the ring of Gaussian integers are introduced. The asymptotic formulas for their average orders are established.
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1. Introduction. = Exponential  divisor  function

7.7 7 introduced by Subbarao in [7] is a The best modern result is ¢ , <1057/4785[2].

multiplicative function such that One can consider multidimensional exponential
@) = 7(a), divisor function z'l(f) :Z — 7 such that

where 7:7Z — 7 stands for the usual divisor function, z_1((e) ) = 7 (a),

7(n)= Z d\nl' Erdds estimated its maximal order and where 7 (n) is a number of ordered k-tuples of

Subbarao proved an asymptotic formula for positive integers (dy,...,d; ) such that d;---d, =n. So

(e) ;
ZnéxT (n). Later Wu [11] gave more precise © Erée). Toth [10] investigated asymptotic

timation:
estmation properties of 7 and proved that for arbitrarily & >0
> e (n) = Ax+B ”2+0( 912”] k
77 (n) = Ax+Bx X ,
n<x ZT]((e) (n)= Ckx"'xl/zsk—z (log X)+O(ka+8)a

where A and B are computable constants, 6, , is an nsx

exponent in the error term of the estimation

Zabzgxl = 2)x+<4(1/ 2)x1/2 +O(X6’1,2+"’") .
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where S, _, is a polynomial of degree k-2 and
wy =(2k-1)/(4k+1).

In the present paper we  generalize
multidimensional exponential divisor function over the
ring of Gaussian integers Z[i]. Namely we introduce

multiplicative functions
)77, 6zl >z, 2] ->7
such that

(0" =t (a),

6" =7 (a), (M

€L 0N = @,
where p is prime over Z, p is prime over Z[i],
t (a) is a number of ordered k-tuples of non-
associated in pairs Gaussian integers (9y,...,0;) such
that 9;---0 =a

The aim of this paper is to provide asymptotic
formulas for

Ym, Y@, Y @,

n<x N(a)<x N(a)<x

A theorem on the maximal order of multiplicative
functions over Z[i], generalizing [8], is also proved.

Notation. Let us denote the ring of Gaussian
integers by Z[i], N(a+bi) = a?+b%.

In asymptotic relations we use ~, =<, Landau
symbols O and o, Vinogradov symbols < and > in
their usual meanings. All asymptotic relations are

written for the argument tending to the infinity.
Letters p and g with or without indexes denote

Gaussian primes; p and q denote rational primes.

As usual (£(s) is Riemann zeta-function
and L(s, y) is Dirichlet L-function for some character
x. Let y, be the single nonprincipal character
modulo 4, then

Z(s) = ¢ (s)L(s, 24)

is Hecke zeta-function for the ring of Gaussian
integers.

Real and imaginary components of the complex s
are denoted as o:=Rs and t:=3s, so s=o +it.

Notation Z’ means a summation over non-

associated elements of Z[i], and H’ means the

similar relative to multiplication. Notation a~b
means that a and b are associated, that is
a/b e {£l,+i}. But in asymptotic relations ~ preserve
its usual meaning.

Letter y denotes Euler—Mascheroni constant.
Everywhere ¢ >0 is an arbitrarily small number (not
always the same).

We write f+g for the notation of the Dirichlet
convolution

(fxg)(n) = f(d)g(n/d).

dn

2. Preliminary lemmas. We need following auxiliary
results.

Lemma 1. Gaussian integer p is prime if and only
if one of the following cases complies:

. prl+1,

. p~p,where p=3(mod4),

. N(p) =p, where p =1(mod4).
In the last case there are exactly two non-associated
Py and Py such that N(p;) =N(py)=p.

Proof. See [1].

Lemma 2.
DI R @
Np=<x 08X
3 logN(p) ~x, 3)
N(p)<x

Proof. Taking into account Gauss criterion and the
asymptotic law of the distribution of primes in the
arithmetic progression we have

3 1~#{p|pz3(mod4),ps&}+
N(p)=x
+2#{p\p51(m0d4),pr}~
Jx +2 x ==
dA)logx/2  g#)logx logx

A partial summation gives us the second statement
of the lemma.

Lemma 3. Let F:Z —>C be a multiplicative
function such that F(p*) = f(a), where f(n) < n? for
some [>0. Then
logF(n)logl logf
ogF(mloglogn _ _ _logf(n)

lim sup “4)
n— logn n>1 n
Proof. See [8].
Lemma 4. Let f(t)>0. If
T
[ fdt < g(m),
where g(T)=T%log”T, a >1, then

Tf(t log? T ifa=1,
I(T) = | O 4 « gl (5)

bt T Mog?T if a>1.

Proof. Let us divide the interval of integration into
parts:
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1g2 k
(ms Yy jT/z @dm

k+1
o T/2
log2 10g2 k
(T/2 )
<y T/2k+1'[ f(t)dt<< > & EyREy
k=0 k=0

Now the lemma's statement follows from
elementary estimates.

Lemma 5. Letr T>10 and |d-1/2]<1/1ogT.
Then we have the following estimates

J.d+lT|é/( )| & o logST

d+iT
I |L(s 4)| — K 10g

for growing T .
Proof. The statement is the result of the application
of Lemma 4 to the estimates [6].

Lemma 6. Let 0>0 be such value that

c/2+iy<t? as t—oow, and let n>0 be
arbitrarily small. Then
|t|1/2—(1—29)0’ e [091/2],
roel . ell/2.1-n],
20(1-0) ;. 2/3 B
[t log””|t], oe[l-n,1],
log?3|t], o>1.

The same estimates are valid for L(s, y4) also.

Proof. The statement follows from Phragmén—
Lindelo6f principle, exact and approximate functional
equations for £'(s) and L(s, y4). See [4] and [9] for
details.

The best modern result [3] is that 8 <32/205+¢.
If Riemann hypothesis holds for ¢ and for L(s, x4)
then < ¢.

3. Main results. The following theorem generalizes
Lemma 3 to Gaussian integers; the proof's outline
follows the proof of Lemma 3 in [8].

Theorem 7. Let F:Z[i] > C be a multiplicative

function such that F(p*)=1f(a), where f(n) < n/ for
some [>0. Then

log F(a)loglog N(a) _ sup logf(n) _ K

limsu
P g N(a) e n

a—>0
Proof. Let us fix arbitrarily small ¢ >0 .
Firstly, let us show that there are infinitely many «
such that

Q)

log F(e)loglog N(ex)
log N(«x)
By definition of K; we can choose 1 such that
(logf())/1>K;—&/2.
It follows from (3) that for x > 2 inequality

>Kf—€.

Z'N(p)Sx log N(p) > Ax

holds, where 0 <A <1.
Let q be an arbitrarily large Gaussian prime,

N(q) = 2. Consider
r= Zv 1, H' p.
N(p)<N(q) N(p)<N(q)
Then F (@)= (f(1))" and we have

logN(a) _ '
- X

N(p)<N(q)
log N() log f(1)
logN(@@) 1

o=

rlogN(q) > log N(p) > AN(q), (7)

logF(a) =rlogf(l) > ®)

But (7) implies

log A +log N(q) < log

w <loglogN(«),

so logN(q) <loglogN(a)—logA . Then it follows
from (8) that
log N(«) logf(1)
loglogN(a)—log A 1
and since (logf(1))/1>K;—&/2 and A <1 we have
logF(a)loglog N(«) - loglog N(&x)
logN(&) loglogN(a)—1log A
x(Keg—&/2)>Kp —¢.
Secondly, let us show the existence of N(g) such
that for all n > N(g) we have
log F(n)loglog N(«)
log N(«)
Let us choose 0 €(0,6) and 7€(0,8/(1+0)).
Suppose N(«) =3, then we define
0= (@)= (1+0)Ky ’
loglog N(x)
By choice of 6 and 77 we have

logF(a) >

<(1+e)K;.

Q:=02(a)=1log N(a).

Q% = exp(wlog 2) = exp((1-)(1+ 5)Kg ) > e T |
Suppose that the canonical expansion of « is
ar bl bs
Prdp s
where N(p, )< €2 and N(q)> 2. Then
Fla) _ flay) f(by)
b
N?(@) GNP (py) 1k Nk (qy)
Since 2% > ¢ f and K; > (logf(by))/ by then
fby) by _ fby) _|
Na)bk (qk) Qrubk erbk
and it follows that /7, <1. Consider /7;.

a
aNp11

Z:H1‘H2. (9)

From the
statement of the theorem we have f(n) < n/ , SO
F(ay) ap

<
Nk (py) (aka’)ﬂ

< o P

Then
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log IT) < .Qlogw_ﬂ <
<log" T N(a)logloglog N(a) =
o log N()

loglogN(«x) )

Finally by (9) we get
logF(n)=wlogn+log /7, +log /1, =

_ (1+0)K¢logn N (e-0)K;logn
loglogn '

loglogn

Lemma 8.
78 (n) < n,
9 (a) < N¥(a), (10)
£ () < N(a).
Proof. Taking
7 (n)<n and t (n) < n? we have that

into account trivial estimates

suplog 7 (n)n < oo, suplogty (n)n < oo,
n>1 n>1
Now the estimates (10) follows from Theorem 7
and Lemma 3.

We are ready to provide asymptotic formulas for
sums of rili) (n), tff) (), tgi) (a) . Let us denote
Gy (8):= D e (™, Ty (x):= D7 (n),
n

n<x

Fie(s):= D (@N (@), My(x):= > (),

a N(a)<x

Fie(8) = Y HQ(@N (@), My ()= 37 ().
a N(a)<x

Lemma9.
Gu(9) = () TR0 7+ 2 3

4,712

4_g13_ 512
y é,(Sk —6k°—5k +6k)/24(5s)K*k(s),

() = 266)25 )7 )2 (50)x

3,612 342
(75K 60 Z0O—APH3K) 279 (12

4 3 2
70K =26k +57k _34k)/24(8s)Hk(s),

Fup () = Z(s)20 K22 12y 7124K)/2 3

4, 7.2
%7K +7k —61<)/12(4S)X

4_¢1.3_ 512
%75k —6k> -5k +6k)/24(55)H*k(s)’

(13)

where Dirichlet series H(s) are absolutely convergent
for Ms>1/9 and Dirichlet series for Hx«(s), Kx(s)

are absolutely convergent for Rs >1/6.
Proof. The statements can be verified by direct
computation of Bell series of corresponding functions.

For example, Bell series for tf(e) have the following

representation:
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(itf)(pa)xa](l —x(=x2)k - X5)(1<7k2)/2 y

a=0
3,612 3_412
X(l_x6)(—k +6k“—-5k)/6 ><(1_)(7)(1< —4k“+3k)/2

4 3 2
«(1— x3yOKH-26k3457k2-34K)/24 _ 1, 9

Theorem 10.

Ty (X) = Apx + xl/sz (log x)O(ka+8

) (14)

where P, is a polynomial, degP, :(k2+k—4)/2,

and

k2 +k-1

2k2 +2k+1

Proof. Let 1=(k*>+k-2)/2, a=(1,2,....2).
IR

Wk =

Identity (11) implies
o) = o)+ f,

Tu (x) = Y T(ax/n)f(n) (15)

n<x
where
r@an)= Y 1,
dodlz‘ . ~d12 =n
T(a;x):= Zr(a; n)= Z 1,
n<x dOdlz' ~d,<x

and the series Z:Zlf (n)n~“ are absolutely convergent
for o>1/3. Due to [5] we have

T(a;x) = C;x + x2Q(log x) + O(x "k %), (16)

where Q is a polynomial, degQ =1-1, and
_21+1

TR
For k>2 we have wy >1/3.

Wk

One can get the following estimates:

3 % _ O[X—zmg 3 ﬁ/(;lJr)g J — 023y, (17)

n>x n>x
fmlog’n _ [ _yere~of@loghn | _y6ss
> 79X > e | OX )-(18)
n>x n>x
for a>0.

Finally, substituting estimates (16), (17) and (18)
into (15) we get
Ty (0= 3 T 72 5~ fm)QMlogx /m)) |

n a2

n<x n<x

O(xwk+8) = A x+x"2P, (logx) + O(xwk+5

).

Lemma 11.
resF (s)x® /s =Cyx,  resBy (s)x® /s =Cxx, (19)
s=1 s=1

where
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c = =% 1+w—rk(a)_fk(a"1)} (20)

‘ 41;[( Z v

Cy = = 1+w—tk(a)"tk(a"l)]. Q1)
‘ 41;[{ D

Proof. As a consequence of the representation (12)
we have

F(s) _ o (@ |, 1L
76 H[HZ—JO p )

P a:lNas(p)
1S

and so function EF (s)/Z(s) is regular in the
neighbourhood of s =1. At the same time we have

res Z(s) = L(1, 74 )res £ (s) = -,
s=1 s=1 4

which implies (20). The proof of (21) is similar.

Theorem 12.
M, (x) = Cp x + O(x 2 1og> 413y, (22)
2
My (x) = C*kx+0(xl/210g3+2(k +k—2)/3x)’ (23)

where C, and Cs were defined in (20) and (21).

Proof. By Perron formula and by (10) for
c=1+1/logx, logT <logx we have

1 cHT x5 X1+g
My (x)=— F (s)—ds+0O .
0= [ RO [ -

Suppose d =1/2—-1/logx . Let us shift the interval
of integration to [d—iT,d+iT]. To do this consider an

integral about a closed rectangle path with vertexes in
d-iT, d+iT, ¢c+iT and c—iT . There are two poles
in s=1 and s=1/2 inside the contour. The residue at
s =1 was calculated in (19). The residue at s=1/2 is
equal to Dx!2, D is constant, and will be absorbed by
error term (see below).

Identity (12) implies

Fe($) = Z(5)Z 29)Li 5) .
where Ly (s) is regular for Ms>1/3, so for each
£ >0 itis uniformly bounded for Rs >1/3+¢.

Let us estimate the error term using Lemma 5 and
Lemma 6. The error term absorbs values of integrals
about three sides of the integration's rectangle. We take
into account Z(s) = (s)L(s, x4). On the horizontal

segments we have
c+iT s
j C2(9)ZK 2s)ds <
d+iT S

< max Z(o+iT)Z¥ 2o +2T)x° T «

oeld,c]
< x2120 7 o4 BT 4 T 1og3T,

It is well-known that J(s)~ (s—l)_1 in the
neighborhood of s=1. So on the vertical segment we

90

have the following estimates. Near pole one can
calculate that

d+i § 1
jd "7(5)75 1 (25) X ds « x1/2 jogk‘l 2d +2it)dt <
S

1/2 (1 dt
O P ]
|[it—1/logx |
and for the rest of the vertical segment we get

< < xl/zlogk_lx,

d+T S
[ 275 26) X ds <
d+i S

1/4
T L g dt T . 4 dt
<<U‘1 [S(1/2+it)] T-[l [L(1/2+it, y4) | TJ x

1/2
T
x( L | Z(1+ 2it) PKD %j <

1/2
< x'? (logST-logg(k_l)/3+lT) <

< x21ogH40DBT.

The choice T = x"?** finishes the proof of (22).

The proof of (23) is similar, but due to (13) one
have replace k—1 by (k2 +k-2)/2.
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