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Let (e)
k  be a multiplicative function such that  

1 k

(e) a
k

d d a

p 1


 


. In the paper the generalizations of (e)
k over 

the ring of Gaussian integers are introduced. The asymptotic formulas for their average orders are established. 
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О РАСПРЕДЕЛЕНИИ ЭКСПОНЕНЦИАЛЬНОЙ ФУНКЦИИ ДИВИЗОРОВ 

Лелеченко А.В. 

 Пусть (e)
k  - мультипликативная функция, такая что  

1 k

(e) a
k

d d a

p 1


 


. В работе содержится обобщение 

(e)
k  на кольцо Гауссовых целых чисел. Установлена асимптотическая формула для их средних порядков. 
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ПРО РОЗПОДІЛ ЕКСПОНЕНЦІАЛЬНОЇ ФУНКЦІЇ ДИВИЗОРІВ 

Лелеченко А.В. 

Нехай (e)
k

 

– мультиплікативна функція, така що  
1 k

(e) a
k

d d a

p 1


 


. В роботі наведено узагальнення (e)
k  

на кільце Гаусових цілих чисел. Отримана асимптотична формула для їх середніх порядків. 
 
КЛЮЧОВІ СЛОВА: функція дільників, Гаусові цілі числа, асимптотична формула.  
 
 
 
1. Introduction. Exponential divisor function 

The best modern result is 1,2 1057 / 4785  [2]. (e) :    introduced by Subbarao in [7] is a 
multiplicative function such that  One can consider multidimensional exponential 

divisor function  such that  (e)
k :  (e) a(p ) = (a),   

where :  

d|n
1

(e) (n)

 stands for the usual divisor function, 

. Erdös estimated its maximal order and 

Subbarao proved an asymptotic formula for 

. Later Wu [11] gave more precise 

estimation:  

(n) =

n x

(e) a
kk (p ) = (a),   

where k (n)  is a number of ordered k -tuples of 

positive integers  such that . So 1 k(d , ,d ) 1 kd d = n
(e)
2

(e)  . Toth [10] investigated asymptotic 

properties of (e)
k  and proved that for arbitrarily > 0   

(e) 1/2 1,2

n x

(n) = Ax Bx O x ,
 






    
    w(e) 1/2 k

k k 2k
n x

(n) = C x x S (log x) O x ,
 



   

where  and  are computable constants, A B 1,2  is an 

exponent in the error term of the estimation 

1/2 1,2
2ab

1 = (2)x (1/ 2)x O xx
 

 
       .  
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where  is a polynomial of degree  and 

. 
k 2S 

(2k 1)

k 2

kw = / (4k 1) 
We write  for the notation of the Dirichlet 

convolution  

f g

In the present paper we generalize 
multidimensional exponential divisor function over the 
ring of Gaussian integers . Namely we introduce 

multiplicative functions 

[i] d|n

(f g)(n) = f (d)g(n / d).  

2. Preliminary lemmas. We need following auxiliary 
results. (e)

*k :   ,   ,  (e)
k : [i] t

(e)
*k : [i] t

 
such that        Lemma 1. Gaussian integer  is prime if and only 

if one of the following cases complies:  

p

(e) a
k*k

(e) a
kk

(e) a
k*k

(p ) = (a),

( ) = (a),

( ) = (a),





t

t p

t p t

   (1) 
 1 ip ,  

 pp , where p 3(mod 4) ,  
 N( ) = pp , where p 1(mod 4) .  

In the last case there are exactly two non-associated 
 and  such that 1p 2p 1 2N( ) = N( ) = pp p .  where p  is prime over  ,  is prime over , 

 is a number of ordered -tuples of non-

associated in pairs Gaussian integers ( ,  such 

that  

p [i]

k )
k (a)t k

1 ,d d

1 k = ad d

Proof. See [1]. 
 

      Lemma 2.  

N( ) x

x
1'

log x



p

The aim of this paper is to provide asymptotic 
formulas for  

,      (2) 

N( ) x

log N( ) x,'



p

p      (3) (e)
*k

n x

(n)

 ,  (e)

k
N( ) x

( )'





 t ,  (e)
*k

N( ) x

( )'





 t . 

Proof. Taking into account Gauss criterion and the 
asymptotic law of the distribution of primes in the 
arithmetic progression we have  

A theorem on the maximal order of multiplicative 
functions over , generalizing [8], is also proved. [i]

 
 

N( ) x

1 # p | p 3(mod 4), p x'

2# p | p 1(mod 4), p x

x x
2 =

(4)log x / 2 (4)log x log x 



 

x
.

  

  




p







 

      Notation. Let us denote the ring of Gaussian 

integers by , [i] 2 2N(a bi) = a b  . 

In asymptotic relations we use  , , Landau 
symbols  and , Vinogradov symbols  and   in 
their usual meanings. All asymptotic relations are 
written for the argument tending to the infinity. 


O o

      A partial summation gives us the second statement 
of the lemma. Letters  and q  with or without indexes denote 

Gaussian primes; 

p

p  and  denote rational primes. q  
      Lemma 3. Let  be a multiplicative 

function such that , where f (

F :  
ap ) = f (a)F( n) n  for 

some > 0 . Then  

As usual (s)  is Riemann zeta-function 

and L(s, )  is Dirichlet L-function for some character 

 . Let 4  be the single nonprincipal character 

modulo 4, then  
n 1n

log F(n)log log n logf (n)
= .lim sup sup

log n n
 (4) 

4Z(s) = (s)L(s, )   Proof. See [8]. 
  is Hecke zeta-function for the ring of Gaussian 

integers.       Lemma 4. Let . If  f (t) 0
Real and imaginary components of the complex s  

are denoted as := s   and , so s =t := s it  . 
T

1
f (t)dt g(T),   

Notation  means a summation over non-

associated elements of , and  means the 

similar relative to multiplication. Notation a b  
means that  and 

'

a

[i] '


b  are associated, that is 
. But in asymptotic relations  preserve 

its usual meaning. 

a / b { 1, i   } 

where g(T) = T Tlog  , 1  , then  

1T

11

T if = 1logf (t)
I(T) := dt

t T T if >log



 













 
,

1.
 (5) 

Proof. Let us divide the interval of integration into 
parts:  

Letter   denotes Euler–Mascheroni constant. 

Everywhere > 0  is an arbitrarily small number (not 
always the same). 
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N( ) x
log N( ) > Ax'  p

p  k2

k 1T/2
k=0

k k2 2T/2

k 1 k 11
k=0 k=0

Tlog
T / 2 f (t)

I(T) dt <
t

Tlog log
1 g

f (t)dt .
T / 2 T / 2



 





 

  

holds, where 0 < . A < 1

T
(T / 2 )

      Let  be an arbitrarily large Gaussian prime, q

N( ) q 2 . Consider  
l

N( ) N( ) N( ) N( )

r = 1, = .'' 
 
 
p q p q

p  
      Now the lemma's statement follows from 
elementary estimates. 

      Then  and we have  r
kF ( ) = (f (l)) 

Lemma 5. Let  and | d . 

Then we have the following estimates  

T > 10 1/ 2 | 1/ log T 

N( ) N( )

log N( )
r log N( ) = log N( ) > AN( ),'

l





 
p q

q p q (7) 

d iT 4 5
d iT

d iT 4 5
4d iT

ds
(s) T,log

s
ds

L(s, ) T,log
s




















 

log N( ) log f (l)
log F( ) = r log f (l) .

log N( ) l

 
q

 (8) 

      But (7) implies  
log N( )

log A log N( ) < log log log N( ),
l

  q  for growing .  T
Proof. The statement is the result of the application 

of Lemma 4 to the estimates [6]. so log N( ) < log log N( ) log A q . Then it follows 

from (8) that   
Lemma 6. Let > 0  be such value that 

(1/ 2 it) t    as , and let t  > 0  be 

arbitrarily small. Then  

log N( ) log f (l)
log F( ) >

log log N( ) log A l


 

 

and since f(log f (l)) / l > K / 2  and  we have  A < 1
1/2 (1 2 )

2 (1 )

2 (1 ) 2/3

2/3

| t | , [0,1/ 2],

| t | , [1/ 2,1 ],
(s)

| t | | t |, [1 ,1],log

| t |, 1.log

 

 

 



 


 



 





 

  


 




  
f f

log F( )log log N( ) log log N( )
>

log N( ) log log N( ) log A

(K / 2) > K .

  
 

 




  
 

      Secondly, let us show the existence of N( )  such 

that for all n N( )  we have  
      The same estimates are valid for 4L(s, )  also.  

f
log F(n) log log N( )

< (1 )K .
log N( )

 


  Proof. The statement follows from Phragmén—
Lindelöf principle, exact and approximate functional 
equations for (s)  and 4L(s, ) . See [4] and [9] for 

details. 

      Let us choose (0, )   and (0, / (1 ))    . 

Suppose N( ) 3  , then we define  
 1f(1 )K

:= ( ) = , := ( ) = N( ).log
loglog N( )

      



 The best modern result [3] is that 32 / 205   . 

If Riemann hypothesis holds for   and for 4L(s, )  

then   . 
      By choice of   and   we have  

  Kf
f= exp( log ) = exp (1 )(1 )K > e .        

3. Main results. The following theorem generalizes 
Lemma 3 to Gaussian integers; the proof's outline 
follows the proof of Lemma 3 in [8]. 

      Suppose that the canonical expansion of   is  
a b ba1 1 sr

r s1 1p ,  p q q  

where kN( ) p  and kN( ) > q . Then   
Theorem 7. Let  be a multiplicative 

function such that , where 

F : [i]
a ) = f (a)p


F( f (n) n  for 

some > 0 . Then  

r s
k k

1 2a bk kk=1 k=1k k

f (a ) f (b )F( )
= :

N ( ) N ( ) N ( )
  
  


  
p q

= .

k

(9) 

      Since  and  then  
Kf> e f kK (log f (b )) / b

f
n 1

log F( ) log log N( ) log f (n)
= := Klimsup sup

log N( ) n

 
 

.    (6) 
k k k

b b Kk k f kk

f (b ) f (b ) f (b )
< <

bN (q ) e
 

1  
Proof. Let us fix arbitrarily small > 0 . 

      Firstly, let us show that there are infinitely many   
such that  

and it follows that 2 1  . Consider . From the 

statement of the theorem we have 

1

nf (n)  , so  
f

log F( ) log log N( )
> K .

log N( )

  


  
k k

ak kk

af (a )
.

(a )N (p )




 
   

      By definition of  we can choose  such that  fK l

f(log f (l)) / l > K / 2 .       Then  
      It follows from (3) that for  inequality  x 2
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1

1

log log w

log N( )log log log N( ) =

log N( )
o .

log log N( )





 

 









 

 

 

  

2(e) (k ka a 2 k 1 5
k

a=0

3 2 3 2( k (k6 7

4 3 2(3k8 9

)/2( )x (1 x)(1 x ) (1 x )

6k 5k)/6 4k 3k)/2(1 x ) (1 x )

26k 57k 34k)/24(1 x ) = 1 O(x ).







   

 

   



   

    

t p

  

      Finally by (9) we get  
 1 2

f f

log F(n) = log n log log =

(1 )K log n ( )K log n
.

log log n loglog n

  
  

 
 

 
 Theorem 10.  

w1/2 k
*k k kT (x) = A x x P (log x)O(x ),


  (14) 

 where  is a polynomial, , 

and  
kP 2

kdeg P = (k k 4) / 2 
      Lemma 8.  

(e)
*k

(e)
k

(e)
*k

(n) n ,

( ) N ( ),

( ) N ( ).









 

 

t

t







   (10) 

2

k 2

k k 1
w =

2k 2k 1

 

 
. 

Proof. Let , 2l = (k k 2) / 2 
l

= (1,2, , 2)a  . 

Identity (11) implies  
Proof. Taking into account trivial estimates 

k (n) n   and  we have that  2
k (n) nt (e)

*k*k
n x

= ( ; ) f , T (x) = T( ; x / n)f (n) 


 a a  (15) 
k k

n 1 n 1
log (n)n < , log (n)n < .sup sup

 
 t  

where  
      Now the estimates (10) follows from Theorem 7 
and Lemma 3. 

2 2d0 1 l

2n x d0 1 l

( ;n) = 1,

d d =n

T( ;x) := ( ;n) = 1,

d d x




 



 

a

a a





 
 
We are ready to provide asymptotic formulas for 

sums of , (e)
*k (n) (e)

k ( )t , (e)
*k ( )t . Let us denote  

(e) (e)s
*k *k*k *k

n n x

(e) (e)s
k kk

N( ) x

(e) (e)s
*k *k*k *k

N( ) x

G (s) := (n)n , T (x) := (n),

F (s) := ( )N ( ), M (x) := ( ),' '

F (s) := ( )N ( ), M (x) := ( ).' '

 

 

 

k  

  












 

 

 

t

t t

and the series 
n=1

f (n)n    are absolutely convergent 

for > 1/ 3 . Due to [5] we have  t  

w1/2 k
1T( ; x) = C x x Q(log x) O(x ),


 a      (16) 

where Q  is a polynomial, , and  deg Q = l 1
      Lemma 9.  

k
2l 1

w =
4l 5




. 2 2(k ( k
*k

4 2( k

4 3 2(5k
*k

k 2)/2 k)/2G (s) = (s) (2s) (3s)

7k 6k)/12(4s)

6k 5k 6k)/24(5s)K (s),

  









   

  

  
2(k kk 1

k

3 2 3 2( k (k

4 3 2(3k
k

)/2F (s) = Z(s)Z (2s)Z (5s)

6k 5k)/6 4k 3k)/2Z (6s) Z (7

26k 57k 34k)/24Z (8s)H (s),







    

  

(11)

      (12) 

      For  we have . k 2 kw > 1/ 3

 
      One can get the following estimates: 

2/3 2/3
1/3

n>x n>x

f (n) f (n)
= O x = O(x ),

n n
 


   




 

 
   (17) 

a a
1/6 1/6

1/2 1/3
n>x n>x

f(n) n f(n) nlog log
=O x =O(x ).

n n
 


   




 

 
  (18) s)

for . a 0
2 2(k ( k

*k

4 2( k

4 3 2(5k
*k

k 2)/2 k)/2F (s) = Z(s)Z (2s)Z (3s)

7k 6k)/12Z (4s)

6k 5k 6k)/24Z (5s)H (s),





   

  

  

(13) 

      Finally, substituting estimates (16), (17) and (18) 
into (15) we get 

1/2
*k 1 1/2

n x n x

w w1/2k k
k k

f (n) f (n)Q(log(x / n))
T (x) = C x x

n n

O(x ) = A x x P (log x) O(x ).
 

 
 

  

 
 

where Dirichlet series  are absolutely convergent 

for  and Dirichlet series for ,  

are absolutely convergent for 

H(s)

s > 1/ 9 *H (s) *K (s)

s > 1/ 6 .  

 
      Lemma 11.  

s s
k k *k

s 1 s 1
res F (s)x / s = C x, res F (s)x / s = C x,
 

*k  (19) Proof. The statements can be verified by direct 
computation of Bell series of corresponding functions. 

For example, Bell series for  have the following 

representation:  

(e)
kt

where  
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k k
k a

a=2

(a) (a 1)
C = 1

4 N ( )

    


 


p p
,

   (20) 

k k
*k a

a=2

(a) (a 1)
C = 1

4 N ( )

   
  

 


p

t t

p
.   (21) 

Proof. As a consequence of the representation (12) 
we have  

1k k
as

p a=1

k k
as

a=2

F (s) (a)
= 1 (1 )

Z(s) N ( )

(a) (a 1)
1 ,

N ( )



 







  

 

  
   

 

 

 
p

p
p

p

=

 

and so function  is regular in the 

neighbourhood of . At the same time we have 
kF (s) / Z(s)

s = 1

4
s 1 s 1
res Z(s) = L(1, ) res (s) = ,

4

 
 

 

which implies (20). The proof of (21) is similar. 
 

Theorem 12.  
1/2 3 4(k 1)/3

k kM (x) = C x O(x x),log     (22) 

21/2 3 2(k
*k *k

k 2)/3M (x) = C x O(x x),log     (23) 

where  and  were defined in (20) and (21).  kC *kC

Proof. By Perron formula and by (10) for 
,  we have  c = 1 1/ log x log T log x

s 1c iT
k kc iT

1 x x
M (x) = F (s) ds O .

2 i s T









 
   

 
  

      Suppose d = . Let us shift the interval 

of integration to . To do this consider an 

integral about a closed rectangle path with vertexes in 
, ,  and c

1/ 2 1/ log x
[d iT,d iT] 

iT c iT id iT d  T . There are two poles 
in  and  inside the contour. The residue at 

 was calculated in (19). The residue at s =  is 

equal to , D is constant, and will be absorbed by 
error term (see below). 

s = 1
s = 1

s = 1/ 2

1/2

1/ 2

Dx

Identity (12) implies  
k 1

k kF (s) = Z(s)Z (2s)L (s) , 

where  is regular for kL (s) s > 1/ 3 , so for each 

> 0  it is uniformly bounded for s > 1/ 3   . 
Let us estimate the error term using Lemma 5 and 

Lemma 6. The error term absorbs values of integrals 
about three sides of the integration's rectangle. We take 
into account 4Z(s) = (s)L(s, )  . On the horizontal 

segments we have  
sc iT k 1

d iT

k 1 1

[d,c]

1/2 2 1 14(k 1)/3 4/3

x
Z(s)Z (2s) ds

s

Z( iT)Z (2 2iT)x Tmax

x T T xT T,log log






 

 


 



 

 



 





  

It is well-known that  in the 

neighborhood of . So on the vertical segment we 

have the following estimates. Near pole one can 
calculate that 

1(s) (s 1) 
s = 1

sd i 1k 1 1/2 k 1
d 0

11/2 1/2 k 1
k 10

x
Z(s)Z (2s) ds x (2d 2it)dt

s
dt

x x xlog
| it 1/ log x |


  








 



 

  ,
 

and for the rest of the vertical segment we get 

 

sd iT k 1

d i

1/4T T4 4
41 1

1/2T 2(k 1)
1

1/21/2 5 8(k 1)/3 1

1/2 3 4(k 1)/3

x
Z(s)Z (2s) ds

s

dt dt
| (1/ 2 it) | | L(1/ 2 it, ) |

t t

dt
| Z(1 2it) |

t

x T Tlog log

x T.log

 

 




 

 

    
 

  
 





 









 



 

      The choice 1/2T = x   finishes the proof of (22). 
 
      The proof of (23) is similar, but due to (13) one 

have replace k 1  by . 2
(k k 2) / 2 
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