UDC 511

ON THE DISTRIBUTION OF THE EXPONENTIAL DIVISOR FUNCTION

Lelechenko A. V.
I.I. Mechnikov Odessa National University, Ukraine

Let $\tau_{\mathrm{k}}^{(\mathrm{e})}$ be a multiplicative function such that $\tau_{\mathrm{k}}^{(\mathrm{e})}\left(\mathrm{p}^{\mathrm{a}}\right)=\sum_{\mathrm{d}_{1} \cdots \mathrm{~d}_{\mathrm{k}}=\mathrm{a}} 1$. In the paper the generalizations of $\tau_{\mathrm{k}}^{(\mathrm{e})}$ over the ring of Gaussian integers are introduced. The asymptotic formulas for their average orders are established.

KEY WORDS: divisor function, Gaussian integers, asymptotic formula.

О РАСПРЕДЕЛЕНИИ ЭКСПОНЕНЦИАЛЬНОЙ ФУНКЦИИ ДИВИЗОРОВ

Лелеченко А.В.

Пусть $\tau_{\mathrm{k}}^{(\mathrm{e})}$ - мультипликативная функция, такая что $\tau_{\mathrm{k}}^{(\mathrm{e})}\left(\mathrm{p}^{\mathrm{a}}\right)=\sum_{\mathrm{d}_{1} \cdots \mathrm{~d}_{\mathrm{k}}=\mathrm{a}}$. В работе содержится обобщение $\tau_{\mathrm{k}}^{(\mathrm{e})}$ на кольцо Гауссовых целых чисел. Установлена асимптотическая формула для их средних порядков.

КЛЮЧЕВЫЕ СЛОВА: функция делителей, Гауссовы целые числа, асимптотическая формула.

ПРО РОЗПОДІЛ ЕКСПОНЕНЦІАЛЬНОЇ ФУНКЦІЇ ДИВИЗОРІВ

Лелеченко А.В.

Нехай $\tau_{\mathrm{k}}^{(\mathrm{e})}$ - мультиплікативна функція, така що $\tau_{\mathrm{k}}^{(\mathrm{e})}\left(\mathrm{p}^{\mathrm{a}}\right)=\sum_{\mathrm{d}_{1} \cdots \mathrm{~d}_{\mathrm{k}}=\mathrm{a}} 1$. В роботі наведено узагальнення $\tau_{\mathrm{k}}^{(\mathrm{e})}$ на кільце Гаусових цілих чисел. Отримана асимптотична формула для їх середніх порядків.

КЛЮЧОВІ СЛОВА: функція дільників, Гаусові цілі числа, асимптотична формула.

1. Introduction. Exponential divisor function $\tau^{(\mathrm{e})}: \mathbb{Z} \rightarrow \mathbb{Z}$ introduced by Subbarao in [7] is a multiplicative function such that

$$
\tau^{(\mathrm{e})}\left(\mathrm{p}^{\mathrm{a}}\right)=\tau(\mathrm{a})
$$

where $\tau: \mathbb{Z} \rightarrow \mathbb{Z}$ stands for the usual divisor function, $\tau(\mathrm{n})=\sum_{\mathrm{d} \mid \mathrm{n}} 1$. Erdös estimated its maximal order and Subbarao proved an asymptotic formula for $\sum_{\mathrm{n} \leq \mathrm{x}} \tau^{(\mathrm{e})}(\mathrm{n})$. Later Wu [11] gave more precise estimation:

$$
\sum_{\mathrm{n} \leq \mathrm{x}} \tau^{(\mathrm{e})}(\mathrm{n})=\mathrm{Ax}+\mathrm{Bx}^{1 / 2}+\mathrm{O}\left(\mathrm{x}^{\theta_{1,2}+\varepsilon}\right)
$$

where A and B are computable constants, $\theta_{1,2}$ is an exponent in the error term of the estimation

$$
\sum_{\mathrm{ab}^{2} \leq \mathrm{x}} 1=\zeta(2) \mathrm{x}+\zeta(1 / 2) \mathrm{x}^{1 / 2}+\mathrm{O}\left(\mathrm{x}^{\theta_{1,2}+\varepsilon}\right)
$$

The best modern result is $\theta_{1,2} \leq 1057 / 4785$ [2].
One can consider multidimensional exponential divisor function $\tau_{\mathrm{k}}^{(\mathrm{e})}: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

$$
\tau_{\mathrm{k}}^{(\mathrm{e})}\left(\mathrm{p}^{\mathrm{a}}\right)=\tau_{\mathrm{k}}(\mathrm{a})
$$

where $\tau_{\mathrm{k}}(\mathrm{n})$ is a number of ordered k -tuples of positive integers $\left(d_{1}, \ldots, d_{k}\right)$ such that $d_{1} \cdots d_{k}=n$. So $\tau^{(\mathrm{e})} \equiv \tau_{2}^{(\mathrm{e})}$. Toth $\quad[10] \quad$ investigated asymptotic properties of $\tau_{\mathrm{k}}^{(\mathrm{e})}$ and proved that for arbitrarily $\varepsilon>0$

$$
\sum_{\mathrm{n} \leq \mathrm{x}} \tau_{\mathrm{k}}^{(\mathrm{e})}(\mathrm{n})=\mathrm{C}_{\mathrm{k}} \mathrm{x}+\mathrm{x}^{1 / 2} \mathrm{~S}_{\mathrm{k}-2}(\log \mathrm{x})+\mathrm{O}\left(\mathrm{x}^{\mathrm{w}_{\mathrm{k}}+\varepsilon}\right),
$$

[^0]where S_{k-2} is a polynomial of degree $k-2$ and $\mathrm{w}_{\mathrm{k}}=(2 \mathrm{k}-1) /(4 \mathrm{k}+1)$.

In the present paper we generalize multidimensional exponential divisor function over the ring of Gaussian integers $\mathbb{Z}[i]$. Namely we introduce multiplicative functions

$$
\tau_{* \mathrm{k}}^{(\mathrm{e})}: \mathbb{Z} \rightarrow \mathbb{Z}, \quad \mathfrak{t}_{\mathrm{k}}^{(\mathrm{e})}: \mathbb{Z}[\mathrm{i}] \rightarrow \mathbb{Z}, \quad \mathfrak{t}_{\mathrm{*}_{\mathrm{k}}}^{(\mathrm{e})}: \mathbb{Z}[\mathrm{i}] \rightarrow \mathbb{Z}
$$

such that

$$
\begin{align*}
& \tau_{* \mathrm{k}}^{(\mathrm{e})}\left(\mathrm{p}^{\mathrm{a}}\right)=\mathfrak{t}_{\mathrm{k}}(\mathrm{a}), \\
& \mathfrak{t}_{\mathrm{k}}^{(\mathrm{e})}\left(\mathfrak{p}^{\mathrm{a}}\right)=\tau_{\mathrm{k}}(\mathrm{a}), \tag{1}\\
& \mathfrak{t}_{* \mathrm{k}}^{(\mathrm{e})}\left(\mathfrak{p}^{\mathrm{a}}\right)=\mathfrak{t}_{\mathrm{k}}(\mathrm{a}),
\end{align*}
$$

where p is prime over \mathbb{Z}, \mathfrak{p} is prime over $\mathbb{Z}[i]$, $\mathfrak{t}_{\mathrm{k}}(\mathrm{a})$ is a number of ordered k -tuples of nonassociated in pairs Gaussian integers $\left(\mathfrak{d}_{1}, \ldots, \mathfrak{d}_{\mathrm{k}}\right)$ such that $\mathfrak{d}_{1} \cdots \mathfrak{d}_{\mathrm{k}}=\mathrm{a}$

The aim of this paper is to provide asymptotic formulas for

$$
\sum_{\mathrm{n} \leq \mathrm{x}} \tau_{* \mathrm{k}}^{(\mathrm{e})}(\mathrm{n}), \quad \sum_{\mathrm{N}(\alpha) \leq \mathrm{x}} \mathfrak{t}_{\mathrm{k}}^{(\mathrm{e})}(\alpha), \quad \sum_{\mathrm{N}(\alpha) \leq \mathrm{x}} \mathfrak{t}_{* \mathrm{k}}^{(\mathrm{e})}(\alpha) .
$$

A theorem on the maximal order of multiplicative functions over $\mathbb{Z}[i]$, generalizing [8], is also proved.

Notation. Let us denote the ring of Gaussian integers by $\mathbb{Z}[i], N(a+b i)=a^{2}+b^{2}$.

In asymptotic relations we use \sim, \asymp, Landau symbols O and o, Vinogradov symbols \ll and \gg in their usual meanings. All asymptotic relations are written for the argument tending to the infinity.

Letters \mathfrak{p} and \mathfrak{q} with or without indexes denote Gaussian primes; p and q denote rational primes.

As usual $\zeta(\mathrm{s})$ is Riemann zeta-function and $\mathrm{L}(\mathrm{s}, \chi)$ is Dirichlet L-function for some character χ. Let χ_{4} be the single nonprincipal character modulo 4, then

$$
\mathrm{Z}(\mathrm{~s})=\zeta(\mathrm{s}) \mathrm{L}\left(\mathrm{~s}, \chi_{4}\right)
$$

is Hecke zeta-function for the ring of Gaussian integers.

Real and imaginary components of the complex s are denoted as $\sigma:=\mathfrak{R}$ s and $\mathrm{t}:=\mathfrak{J} \mathrm{s}$, so $\mathrm{s}=\sigma+\mathrm{it}$.

Notation \sum, means a summation over nonassociated elements of $\mathbb{Z}[i]$, and \prod means the similar relative to multiplication. Notation $a \sim b$ means that a and b are associated, that is $\mathrm{a} / \mathrm{b} \in\{ \pm 1, \pm \mathrm{i}\}$. But in asymptotic relations \sim preserve its usual meaning.

Letter $\quad \gamma$ denotes Euler-Mascheroni constant. Everywhere $\varepsilon>0$ is an arbitrarily small number (not always the same).

We write $\mathrm{f} \star \mathrm{g}$ for the notation of the Dirichlet convolution

$$
(\mathrm{f} \star \mathrm{~g})(\mathrm{n})=\sum_{\mathrm{d} \mid \mathrm{n}} \mathrm{f}(\mathrm{~d}) \mathrm{g}(\mathrm{n} / \mathrm{d})
$$

2. Preliminary lemmas. We need following auxiliary results.

Lemma 1. Gaussian integer \mathfrak{p} is prime if and only if one of the following cases complies:

- $\mathfrak{p} \sim 1+\mathrm{i}$,
- $\mathfrak{p} \sim p$, where $p \equiv 3(\bmod 4)$,
- $\quad \mathrm{N}(\mathrm{p})=\mathrm{p}$, where $\mathrm{p} \equiv 1(\bmod 4)$.

In the last case there are exactly two non-associated \mathfrak{p}_{1} and \mathfrak{p}_{2} such that $\mathrm{N}\left(\mathfrak{p}_{1}\right)=\mathrm{N}\left(\mathfrak{p}_{2}\right)=\mathrm{p}$.

Proof. See [1].

Lemma 2.

$$
\begin{align*}
& \sum_{N(\mathfrak{p}) \leq x} 1 \sim \frac{x}{\log x}, \tag{2}\\
& \sum_{N(\mathfrak{p}) \leq x} \log N(\mathfrak{p}) \sim x \tag{3}
\end{align*}
$$

Proof. Taking into account Gauss criterion and the asymptotic law of the distribution of primes in the arithmetic progression we have

$$
\begin{aligned}
& \sum_{\mathrm{N}(\mathfrak{p}) \leq \mathrm{x}} 1 \sim \#\{\mathrm{p} \mid \mathrm{p} \equiv 3(\bmod 4), \mathrm{p} \leq \sqrt{\mathrm{x}}\}+ \\
& \quad+2 \#\{\mathrm{p} \mid \mathrm{p} \equiv 1(\bmod 4), \mathrm{p} \leq \mathrm{x}\} \sim \\
& \sim \frac{\sqrt{\mathrm{x}}}{\phi(4) \log \mathrm{x} / 2}+2 \frac{\mathrm{x}}{\phi(4) \log \mathrm{x}}=\frac{\mathrm{x}}{\log \mathrm{x}} .
\end{aligned}
$$

A partial summation gives us the second statement of the lemma.

Lemma 3. Let $\mathrm{F}: \mathbb{Z} \rightarrow \mathbb{C}$ be a multiplicative function such that $\mathrm{F}\left(\mathrm{p}^{\mathrm{a}}\right)=\mathrm{f}(\mathrm{a})$, where $\mathrm{f}(\mathrm{n}) \ll \mathrm{n}^{\beta}$ for some $\beta>0$. Then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\log F(n) \log \log n}{\log n}=\sup _{n \geq 1} \frac{\log f(n)}{n} \tag{4}
\end{equation*}
$$

Proof. See [8].
Lemma 4. Let $\mathrm{f}(\mathrm{t}) \geq 0$. If

$$
\int_{1}^{\mathrm{T}} \mathrm{f}(\mathrm{t}) \mathrm{dt} \ll \mathrm{~g}(\mathrm{~T})
$$

where $\mathrm{g}(\mathrm{T})=\mathrm{T}^{\alpha} \log ^{\beta} \mathrm{T}, \alpha \geq 1$, then

$$
\mathrm{I}(\mathrm{~T}):=\int_{1}^{\mathrm{T}} \frac{\mathrm{f}(\mathrm{t})}{\mathrm{t}} \mathrm{dt} \ll\left\{\begin{array}{cl}
\log ^{\beta+1} \mathrm{~T} & \text { if } \alpha=1 \tag{5}\\
\mathrm{~T}^{\alpha-1} \log ^{\beta} \mathrm{T} & \text { if } \alpha>1
\end{array}\right.
$$

Proof. Let us divide the interval of integration into parts:

$$
\begin{aligned}
& I(T) \leq \sum_{k=0}^{\log _{2} \mathrm{~T}} \int_{\mathrm{T} / 2^{\mathrm{k}+1}}^{\mathrm{T} / 2^{\mathrm{k}} \frac{\mathrm{f}(\mathrm{t})}{\mathrm{t}} \mathrm{dt}<} \\
& <\sum_{\mathrm{k}=0}^{\log _{2} \mathrm{~T}} \frac{1}{\mathrm{~T} / 2^{\mathrm{k}+1} \int_{1}^{\mathrm{T} / 2^{k}} \mathrm{f}(\mathrm{t}) \mathrm{dt} \ll \sum_{\mathrm{k}=0}^{\log _{2} \mathrm{~T}} \frac{\mathrm{~g}\left(\mathrm{~T} / 2^{\mathrm{k}}\right)}{\mathrm{T} / 2^{\mathrm{k}+1}} .}
\end{aligned}
$$

Now the lemma's statement follows from elementary estimates.

Lemma 5. Let $\mathrm{T}>10$ and $|\mathrm{d}-1 / 2| \ll 1 / \log \mathrm{T}$. Then we have the following estimates

$$
\begin{aligned}
& \int_{\mathrm{d}-\mathrm{iT}}^{\mathrm{d}+\mathrm{iT}}|\zeta(\mathrm{~s})|^{4} \frac{\mathrm{ds}}{\mathrm{~s}} \ll \log ^{5} \mathrm{~T}, \\
& \int_{\mathrm{d}-\mathrm{iT}}^{\mathrm{d}+\mathrm{iT}}\left|\mathrm{~L}\left(\mathrm{~s}, \chi_{4}\right)\right|^{4} \frac{\mathrm{ds}}{\mathrm{~s}} \ll \log ^{5} \mathrm{~T},
\end{aligned}
$$

for growing T .
Proof. The statement is the result of the application of Lemma 4 to the estimates [6].

Lemma 6. Let $\theta>0$ be such value that $\zeta(1 / 2+\mathrm{it}) \ll \mathrm{t}^{\theta}$ as $\mathrm{t} \rightarrow \infty$, and let $\eta>0$ be arbitrarily small. Then

$$
\zeta(\mathrm{s}) \ll\left\{\begin{array}{cc}
|\mathrm{t}|^{1 / 2-(1-2 \theta) \sigma}, & \sigma \in[0,1 / 2], \\
|\mathrm{t}|^{2 \theta(1-\sigma)}, & \sigma \in[1 / 2,1-\eta], \\
|\mathrm{t}|^{2 \theta(1-\sigma)} \log ^{2 / 3}|\mathrm{t}|, & \sigma \in[1-\eta, 1], \\
\log ^{2 / 3}|\mathrm{t}|, & \sigma \geq 1 .
\end{array}\right.
$$

The same estimates are valid for $L\left(s, \chi_{4}\right)$ also.
Proof. The statement follows from PhragménLindelöf principle, exact and approximate functional equations for $\zeta(\mathrm{s})$ and $\mathrm{L}\left(\mathrm{s}, \chi_{4}\right)$. See [4] and [9] for details.

The best modern result [3] is that $\theta \leq 32 / 205+\varepsilon$. If Riemann hypothesis holds for ζ and for $\mathrm{L}\left(\mathrm{s}, \chi_{4}\right)$ then $\theta \leq \varepsilon$.
3. Main results. The following theorem generalizes Lemma 3 to Gaussian integers; the proof's outline follows the proof of Lemma 3 in [8].

Theorem 7. Let $\mathrm{F}: \mathbb{Z}[\mathrm{i}] \rightarrow \mathbb{C}$ be a multiplicative function such that $\mathrm{F}\left(\mathfrak{p}^{\mathrm{a}}\right)=\mathrm{f}(\mathrm{a})$, where $\mathrm{f}(\mathrm{n}) \ll \mathrm{n}^{\beta}$ for some $\beta>0$. Then

$$
\begin{equation*}
\limsup _{\alpha \rightarrow \infty} \frac{\log \mathrm{F}(\alpha) \log \log \mathrm{N}(\alpha)}{\log \mathrm{N}(\alpha)}=\sup _{\mathrm{n} \geq 1} \frac{\log \mathrm{f}(\mathrm{n})}{\mathrm{n}}:=\mathrm{K}_{\mathrm{f}} . \tag{6}
\end{equation*}
$$

Proof. Let us fix arbitrarily small $\varepsilon>0$.
Firstly, let us show that there are infinitely many α such that

$$
\frac{\log \mathrm{F}(\alpha) \log \log \mathrm{N}(\alpha)}{\log \mathrm{N}(\alpha)}>\mathrm{K}_{\mathrm{f}}-\varepsilon
$$

By definition of K_{f} we can choose 1 such that $(\log \mathrm{f}(\mathrm{l})) / 1>\mathrm{K}_{\mathrm{f}}-\varepsilon / 2$.
It follows from (3) that for $\mathrm{x} \geq 2$ inequality

$$
\sum_{N(\mathfrak{p}) \leq x}^{\prime} \log N(\mathfrak{p})>A x
$$

holds, where $0<\mathrm{A}<1$.
Let \mathfrak{q} be an arbitrarily large Gaussian prime, $\mathrm{N}(\mathfrak{q}) \geq 2$. Consider

$$
\mathrm{r}=\sum_{N(\mathfrak{p}) \leq N(\mathfrak{q})} 1, \quad \alpha=\prod_{N(\mathfrak{p}) \leq N(\mathfrak{q})} \mathfrak{p}^{1} .
$$

Then $\mathrm{F}_{\mathrm{k}}(\alpha)=(\mathrm{f}(\mathrm{l}))^{\mathrm{r}}$ and we have
$r \log \mathrm{~N}(\mathfrak{q}) \geq \frac{\log \mathrm{N}(\alpha)}{1}=\sum_{\mathrm{N}(\mathfrak{p}) \leq \mathrm{N}(\mathfrak{q})}^{\prime} \log \mathrm{N}(\mathfrak{p})>\operatorname{AN}(\mathfrak{q}),(\mathfrak{7})$

$$
\begin{equation*}
\log \mathrm{F}(\alpha)=r \log \mathrm{f}(\mathrm{l}) \geq \frac{\log \mathrm{N}(\alpha)}{\log \mathrm{N}(\mathfrak{q})} \frac{\log \mathrm{f}(\mathrm{l})}{\mathrm{l}} \tag{8}
\end{equation*}
$$

But (7) implies

$$
\log \mathrm{A}+\log \mathrm{N}(\mathfrak{q})<\log \frac{\log \mathrm{N}(\alpha)}{1} \leq \log \log \mathrm{N}(\alpha)
$$

so $\log \mathrm{N}(\mathfrak{q})<\log \log \mathrm{N}(\alpha)-\log \mathrm{A}$. Then it follows from (8) that

$$
\log \mathrm{F}(\alpha)>\frac{\log \mathrm{N}(\alpha)}{\log \log \mathrm{N}(\alpha)-\log \mathrm{A}} \frac{\log \mathrm{f}(\mathrm{l})}{1}
$$

and since $(\log \mathrm{f}(\mathrm{l})) / 1>\mathrm{K}_{\mathrm{f}}-\varepsilon / 2$ and $\mathrm{A}<1$ we have

$$
\begin{gathered}
\frac{\log \mathrm{F}(\alpha)}{\log \mathrm{N}(\alpha)} \log \mathrm{N}(\alpha) \\
\times\left(\mathrm{K}_{\mathrm{f}}-\varepsilon / 2\right)
\end{gathered}>\frac{\log \log \mathrm{N}(\alpha)}{\log \log \mathrm{N}(\alpha)-\log \mathrm{A}} \times \overline{\mathrm{f}} .
$$

Secondly, let us show the existence of $N(\varepsilon)$ such that for all $\mathrm{n} \geq \mathrm{N}(\varepsilon)$ we have

$$
\frac{\log \mathrm{F}(\mathrm{n}) \log \log \mathrm{N}(\alpha)}{\log \mathrm{N}(\alpha)}<(1+\varepsilon) \mathrm{K}_{\mathrm{f}} .
$$

Let us choose $\delta \in(0, \varepsilon)$ and $\eta \in(0, \delta /(1+\delta))$. Suppose $\mathrm{N}(\alpha) \geq 3$, then we define

$$
\omega:=\omega(\alpha)=\frac{(1+\delta) \mathrm{K}_{\mathrm{f}}}{\log \log \mathrm{~N}(\alpha)}, \Omega:=\Omega(\alpha)=\log ^{1-\eta} \mathrm{N}(\alpha) .
$$

By choice of δ and η we have

$$
\Omega^{\omega}=\exp (\omega \log \Omega)=\exp \left((1-\eta)(1+\delta) \mathrm{K}_{\mathrm{f}}\right)>\mathrm{e}^{\mathrm{K}_{\mathrm{f}}} .
$$

Suppose that the canonical expansion of α is

$$
\alpha \sim \mathfrak{p}_{1}^{a_{1}} \cdots p_{r}^{a_{r}} \mathfrak{q}_{1}^{b_{1}} \cdots \mathfrak{q}_{s}^{b_{s}},
$$

where $\mathrm{N}\left(\mathfrak{p}_{\mathrm{k}}\right) \leq \Omega$ and $\mathrm{N}\left(\mathfrak{q}_{\mathrm{k}}\right)>\Omega$. Then

$$
\begin{equation*}
\frac{\mathrm{F}(\alpha)}{\mathrm{N}^{\omega}(\alpha)}=\prod_{\mathrm{k}=1}^{\mathrm{r}} \frac{\mathrm{f}\left(\mathrm{a}_{\mathrm{k}}\right)}{\mathrm{N}^{\omega \mathrm{a}_{\mathrm{k}}}\left(\mathfrak{p}_{\mathrm{k}}\right)} \cdot \prod_{\mathrm{k}=1}^{\mathrm{s}} \frac{\mathrm{f}\left(\mathrm{~b}_{\mathrm{k}}\right)}{\mathrm{N}^{\omega b_{\mathrm{k}}}\left(\mathfrak{q}_{\mathrm{k}}\right)}:=\Pi_{1} \cdot \Pi_{2} \tag{9}
\end{equation*}
$$

Since $\Omega^{\omega}>\mathrm{e}^{\mathrm{K}_{\mathrm{f}}}$ and $\mathrm{K}_{\mathrm{f}} \geq\left(\log \mathrm{f}\left(\mathrm{b}_{\mathrm{k}}\right)\right) / \mathrm{b}_{\mathrm{k}}$ then

$$
\frac{\mathrm{f}\left(\mathrm{~b}_{\mathrm{k}}\right)}{\mathrm{N}^{\omega \mathrm{b}_{\mathrm{k}}}\left(\mathrm{q}_{\mathrm{k}}\right)}<\frac{\mathrm{f}\left(\mathrm{~b}_{\mathrm{k}}\right)}{\Omega^{\omega \mathrm{b}_{\mathrm{k}}}}<\frac{\mathrm{f}\left(\mathrm{~b}_{\mathrm{k}}\right)}{\mathrm{e}_{\mathrm{f}}^{\mathrm{K}_{\mathrm{k}}}} \leq 1
$$

and it follows that $\Pi_{2} \leq 1$. Consider Π_{1}. From the statement of the theorem we have $\mathrm{f}(\mathrm{n}) \ll \mathrm{n}^{\beta}$, so

$$
\frac{\mathrm{f}\left(\mathrm{a}_{\mathrm{k}}\right)}{\mathrm{N}^{\omega \mathrm{a}_{\mathrm{k}}}\left(\mathrm{p}_{\mathrm{k}}\right)} \ll \frac{\mathrm{a}_{\mathrm{k}}^{\beta}}{\left(\mathrm{a}_{\mathrm{k}} \omega\right)^{\beta}} \ll \omega^{-\beta} .
$$

Then

$$
\begin{aligned}
& \log \Pi_{1} \ll \Omega \log \mathrm{w}^{-\beta} \ll \\
& \ll \log ^{1-\eta} \mathrm{N}(\alpha) \log \log \log \mathrm{N}(\alpha)= \\
& =\mathrm{o}\left(\frac{\log \mathrm{~N}(\alpha)}{\log \log \mathrm{N}(\alpha)}\right)
\end{aligned}
$$

Finally by (9) we get

$$
\begin{aligned}
& \log \mathrm{F}(\mathrm{n})=\omega \log \mathrm{n}+\log \Pi_{1}+\log \Pi_{2}= \\
& =\frac{(1+\delta) \mathrm{K}_{\mathrm{f}} \log \mathrm{n}}{\log \log \mathrm{n}}+\frac{(\varepsilon-\delta) \mathrm{K}_{\mathrm{f}} \log \mathrm{n}}{\log \log \mathrm{n}} .
\end{aligned}
$$

Lemma 8.

$$
\begin{align*}
& \tau_{*_{\mathrm{k}}^{(\mathrm{e})}(\mathrm{n}) \ll \mathrm{n}^{\varepsilon},} \\
& \mathfrak{t}_{\mathrm{k}}^{(\mathrm{e})}(\alpha) \ll \mathrm{N}^{\varepsilon}(\alpha), \tag{10}\\
& \mathfrak{t}_{{ }^{(\mathrm{e}} \mathrm{k}}^{(\mathrm{e}}(\alpha)<\mathrm{N}^{\varepsilon}(\alpha) .
\end{align*}
$$

Proof. Taking into account trivial estimates $\tau_{\mathrm{k}}(\mathrm{n}) \leq \mathrm{n}$ and $\mathfrak{t}_{\mathrm{k}}(\mathrm{n}) \leq \mathrm{n}^{2}$ we have that $\sup _{n>1} \log \tau_{k}(n) n<\infty, \quad \sup _{n>1} \log t_{k}(n) n<\infty$.
Now the estimates (10) follows from Theorem 7 and Lemma 3.

We are ready to provide asymptotic formulas for sums of $\tau_{* \mathrm{k}}^{(\mathrm{e})}(\mathrm{n}), \mathfrak{t}_{\mathrm{k}}^{(\mathrm{e})}(\alpha), \mathfrak{t}_{*_{\mathrm{k}}}^{(\mathrm{e})}(\alpha)$. Let us denote

$$
\begin{aligned}
& \mathrm{G}_{*_{\mathrm{k}}}(\mathrm{~s}):=\sum_{\mathrm{n}} \tau_{* \mathrm{k}}^{(\mathrm{e})}(\mathrm{n}) \mathrm{n}^{-\mathrm{s}}, \quad \mathrm{~T}_{*_{\mathrm{k}}}(\mathrm{x}):=\sum_{\mathrm{n} \leq \mathrm{x}} \tau_{* \mathrm{k}}^{(\mathrm{e})}(\mathrm{n}), \\
& \mathrm{F}_{\mathrm{k}}(\mathrm{~s}):=\sum_{\alpha} \mathrm{t}_{\mathrm{k}}^{(\mathrm{e})}(\alpha) \mathrm{N}^{-\mathrm{s}}(\alpha), \mathrm{M}_{\mathrm{k}}(\mathrm{x}):=\sum_{\mathrm{N}(\alpha) \leq \mathrm{x}} \mathfrak{t}_{\mathrm{k}}^{(\mathrm{e})}(\alpha), \\
& \mathrm{F}_{{ }_{\mathrm{k}}}(\mathrm{~s}):=\sum_{\alpha} \mathrm{t}_{\mathrm{t}_{\mathrm{k}}(\mathrm{e})}(\alpha) \mathrm{N}^{-\mathrm{s}}(\alpha), \mathrm{M}_{*_{\mathrm{k}}}(\mathrm{x}):=\sum_{\mathrm{N}(\alpha) \leq \mathrm{x}} \mathfrak{t}_{\mathrm{t}_{\mathrm{k}}}^{(\mathrm{e})}(\alpha) .
\end{aligned}
$$

Lemma 9.

$$
\begin{align*}
& \mathrm{G}_{* \mathrm{k}}(\mathrm{~s})=\zeta(\mathrm{s}) \zeta^{\left(\mathrm{k}^{2}+\mathrm{k}-2\right) / 2}(2 \mathrm{~s}) \zeta^{\left(-\mathrm{k}^{2}+\mathrm{k}\right) / 2}(3 \mathrm{~s}) \times \\
& \times \zeta^{\left(-\mathrm{k}^{4}+7 \mathrm{k}^{2}-6 \mathrm{k}\right) / 12}(4 \mathrm{~s}) \times \tag{11}\\
& \times \zeta^{\left(5 \mathrm{k}^{4}-6 \mathrm{k}^{3}-5 \mathrm{k}^{2}+6 \mathrm{k}\right) / 24}(5 \mathrm{~s}) \mathrm{K}_{* \mathrm{k}}(\mathrm{~s}), \\
& \mathrm{F}_{\mathrm{k}}(\mathrm{~s})=\mathrm{Z}(\mathrm{~s}) \mathrm{Z}^{\mathrm{k}-1}(2 \mathrm{~s}) \mathrm{Z}^{\left(\mathrm{k}-\mathrm{k}^{2}\right) / 2}(5 \mathrm{~s}) \times \\
& \times \mathrm{Z}^{\left(-\mathrm{k}^{3}+6 \mathrm{k}^{2}-5 \mathrm{k}\right) / 6}(6 \mathrm{~s}) \times \mathrm{Z}^{\left(\mathrm{k}^{3}-4 \mathrm{k}^{2}+3 \mathrm{k}\right) / 2}(7 \mathrm{~s}) \times \tag{12}\\
& \times \mathrm{Z}^{\left(3 \mathrm{k}^{4}-26 \mathrm{k}^{3}+57 \mathrm{k}^{2}-34 \mathrm{k}\right) / 24}(8 \mathrm{~s}) \mathrm{H}_{\mathrm{k}}(\mathrm{~s}), \\
& \mathrm{F}_{* \mathrm{k}}(\mathrm{~s})=\mathrm{Z}(\mathrm{~s}) \mathrm{Z}^{\left(\mathrm{k}^{2}+\mathrm{k}-2\right) / 2}(2 \mathrm{~s}) \mathrm{Z}^{\left(-\mathrm{k}^{2}+\mathrm{k}\right) / 2}(3 \mathrm{~s}) \times \\
& \times \mathrm{Z}^{\left(-\mathrm{k}^{4}+7 \mathrm{k}^{2}-6 \mathrm{k}\right) / 12}(4 \mathrm{~s}) \times \tag{13}\\
& \times \mathrm{Z}^{\left(5 \mathrm{k}^{4}-6 \mathrm{k}^{3}-5 \mathrm{k}^{2}+6 \mathrm{k}\right) / 24}(5 \mathrm{~s}) \mathrm{H}_{* \mathrm{k}}(\mathrm{~s}),
\end{align*}
$$

where Dirichlet series $\mathrm{H}(\mathrm{s})$ are absolutely convergent for $\mathfrak{R}>1 / 9$ and Dirichlet series for $\mathrm{H}_{*}(\mathrm{~s}), \mathrm{K} *(\mathrm{~s})$ are absolutely convergent for $\mathfrak{R s}>1 / 6$.

Proof. The statements can be verified by direct computation of Bell series of corresponding functions. For example, Bell series for $\mathfrak{t}_{\mathrm{k}}^{(\mathrm{e})}$ have the following representation:

$$
\begin{aligned}
& \left(\sum_{a=0}^{\infty} \mathfrak{t}_{k}^{(e)}\left(\mathfrak{p}^{a}\right) x^{a}\right)(1-x)\left(1-x^{2}\right)^{k-1}\left(1-x^{5}\right)^{\left(k-k^{2}\right) / 2} \times \\
& \times\left(1-x^{6}\right)^{\left(-k^{3}+6 k^{2}-5 k\right) / 6} \times\left(1-x^{7}\right)^{\left(k^{3}-4 k^{2}+3 k\right) / 2} \times \\
& \times\left(1-x^{8}\right)^{\left(3 k^{4}-26 k^{3}+57 k^{2}-34 k\right) / 24}=1+O\left(x^{9}\right) .
\end{aligned}
$$

Theorem 10.

$$
\begin{equation*}
\mathrm{T}_{\mathrm{*}_{\mathrm{k}}}(\mathrm{x})=\mathrm{A}_{\mathrm{k}} \mathrm{x}+\mathrm{x}^{1 / 2} \mathrm{P}_{\mathrm{k}}(\log \mathrm{x}) \mathrm{O}\left(\mathrm{x}^{\mathrm{w}_{\mathrm{k}}+\varepsilon}\right) \tag{14}
\end{equation*}
$$

where P_{k} is a polynomial, $\operatorname{deg} P_{k}=\left(k^{2}+k-4\right) / 2$, and

$$
\mathrm{w}_{\mathrm{k}}=\frac{\mathrm{k}^{2}+\mathrm{k}-1}{2 \mathrm{k}^{2}+2 \mathrm{k}+1} .
$$

Proof. Let $1=\left(\mathrm{k}^{2}+\mathrm{k}-2\right) / 2, \quad \mathbf{a}=(1, \underbrace{2, \ldots, 2}_{1})$. Identity (11) implies

$$
\begin{equation*}
\tau_{*_{\mathrm{k}}}^{(\mathrm{e})}=\tau(\mathbf{a} ; \cdot) \star \mathrm{f}, \quad \mathrm{~T}_{*_{\mathrm{k}}}(\mathrm{x})=\sum_{\mathrm{n} \leq \mathrm{x}} \mathrm{~T}(\mathbf{a} ; \mathrm{x} / \mathrm{n}) \mathrm{f}(\mathrm{n}) \tag{15}
\end{equation*}
$$

where

$$
\begin{aligned}
& \tau(\mathbf{a} ; \mathrm{n})=\sum_{\mathrm{d}_{0} \mathrm{~d}_{1}^{2} \cdots \mathrm{~d}_{1}^{2}=\mathrm{n}} 1, \\
& \mathrm{~T}(\mathbf{a} ; \mathrm{x}):=\sum_{\mathrm{n} \leq \mathrm{x}} \tau(\mathbf{a} ; \mathrm{n})=\sum_{\mathrm{d}_{0} \mathrm{~d}_{1}^{2} \cdots \mathrm{~d}_{1} \leq \mathrm{x}} 1,
\end{aligned}
$$

and the series $\sum_{n=1}^{\infty} f(n) n^{-\sigma}$ are absolutely convergent for $\sigma>1 / 3$. Due to [5] we have

$$
\begin{equation*}
\mathrm{T}(\mathbf{a} ; \mathrm{x})=\mathrm{C}_{1} \mathrm{x}+\mathrm{x}^{1 / 2} \mathrm{Q}(\log \mathrm{x})+\mathrm{O}\left(\mathrm{x}^{\mathrm{w}} \mathrm{k}^{+\varepsilon}\right) \tag{16}
\end{equation*}
$$

where Q is a polynomial, $\operatorname{deg} \mathrm{Q}=1-1$, and

$$
\mathrm{w}_{\mathrm{k}}=\frac{21+1}{41+5} .
$$

For $\mathrm{k} \geq 2$ we have $\mathrm{w}_{\mathrm{k}}>1 / 3$.
One can get the following estimates:

$$
\begin{align*}
& \sum_{n>x} \frac{f(n)}{n}=O\left(x^{-2 / 3+\varepsilon} \sum_{n>x} \frac{f(n)}{n^{1 / 3+\varepsilon}}\right)=O\left(x^{-2 / 3+\varepsilon}\right) \tag{17}\\
& \sum_{n>x} \frac{f(n) \log ^{a} n}{n^{1 / 2}}=O\left(x^{-1 / 6+\varepsilon} \sum_{n>x} \frac{f(n) \log ^{a} n}{n^{1 / 3+\varepsilon}}\right)=O\left(x^{-1 / 6+\varepsilon}\right) \tag{18}
\end{align*}
$$

for $\mathrm{a} \geq 0$.
Finally, substituting estimates (16), (17) and (18) into (15) we get

$$
\begin{aligned}
& \mathrm{T}_{{ }_{\mathrm{k}}}(\mathrm{x})=\mathrm{C}_{1} \mathrm{x} \sum_{\mathrm{n} \leq \mathrm{x}} \frac{\mathrm{f}(\mathrm{n})}{\mathrm{n}}+\mathrm{x}^{1 / 2} \sum_{\mathrm{n} \leq \mathrm{x}} \frac{\mathrm{f}(\mathrm{n}) \mathrm{Q}(\log (\mathrm{x} / \mathrm{n}))}{\mathrm{n}^{1 / 2}}+ \\
& \mathrm{O}\left(\mathrm{x}^{\mathrm{w}_{\mathrm{k}}+\varepsilon}\right)=\mathrm{A}_{\mathrm{k}} \mathrm{x}+\mathrm{x}^{1 / 2} \mathrm{P}_{\mathrm{k}}(\log \mathrm{x})+\mathrm{O}\left(\mathrm{x}^{\mathrm{w}_{\mathrm{k}}+\varepsilon}\right) .
\end{aligned}
$$

Lemma 11.

 where

$$
\begin{align*}
& \mathrm{C}_{\mathrm{k}}=\frac{\pi}{4} \prod_{\mathfrak{p}}\left(1+\sum_{\mathrm{a}=2}^{\infty} \frac{\tau_{\mathrm{k}}(\mathrm{a})-\tau_{\mathrm{k}}(\mathrm{a}-1)}{\mathrm{N}^{\mathrm{a}}(\mathfrak{p})}\right), \tag{20}\\
& \mathrm{C}_{*_{\mathrm{k}}}=\frac{\pi}{4} \prod_{\mathfrak{p}}\left(1+\sum_{\mathrm{a}=2}^{\infty} \frac{\mathfrak{t}_{\mathrm{k}}(\mathrm{a})-\mathfrak{t}_{\mathrm{k}}(\mathrm{a}-1)}{\mathrm{N}^{\mathrm{a}}(\mathfrak{p})}\right) . \tag{21}
\end{align*}
$$

Proof. As a consequence of the representation (12) we have

$$
\begin{aligned}
& \frac{\mathrm{F}_{\mathrm{k}}(\mathrm{~s})}{\mathrm{Z}(\mathrm{~s})}=\prod_{\mathrm{p}}\left(1+\sum_{\mathrm{a}=1}^{\infty} \frac{\tau_{\mathrm{k}}(\mathrm{a})}{\mathrm{N}^{\mathrm{as}}(\mathfrak{p})}\right)\left(1-\mathfrak{p}^{-1}\right)= \\
& =\prod_{\mathfrak{p}}\left(1+\sum_{\mathrm{a}=2}^{\infty} \frac{\tau_{\mathrm{k}}(\mathrm{a})-\tau_{\mathrm{k}}(\mathrm{a}-1)}{\mathrm{N}^{\mathrm{as}}(\mathfrak{p})}\right)
\end{aligned}
$$

and so function $\mathrm{F}_{\mathrm{k}}(\mathrm{s}) / \mathrm{Z}(\mathrm{s})$ is regular in the neighbourhood of $s=1$. At the same time we have

$$
\operatorname{res}_{\mathrm{s}=1}^{\mathrm{Z}}(\mathrm{~s})=\mathrm{L}\left(1, \chi_{4}\right) \underset{\mathrm{s}=1}{\operatorname{res}} \zeta(\mathrm{~s})=\frac{\pi}{4}
$$

which implies (20). The proof of (21) is similar.

Theorem 12.

$$
\begin{gather*}
\mathrm{M}_{\mathrm{k}}(\mathrm{x})=\mathrm{C}_{\mathrm{k}} \mathrm{x}+\mathrm{O}\left(\mathrm{x}^{1 / 2} \log ^{3+4(\mathrm{k}-1) / 3} \mathrm{x}\right) \tag{22}\\
\mathrm{M}_{*_{\mathrm{k}}}(\mathrm{x})=\mathrm{C}_{*_{\mathrm{k}}} \mathrm{x}+\mathrm{O}\left(\mathrm{x}^{1 / 2} \log ^{3+2\left(\mathrm{k}^{2}+\mathrm{k}-2\right) / 3} \mathrm{x}\right) \tag{23}
\end{gather*}
$$

where C_{k} and $C_{* k}$ were defined in (20) and (21).
Proof. By Perron formula and by (10) for $\mathrm{c}=1+1 / \log \mathrm{x}, \log \mathrm{T} \asymp \log \mathrm{x}$ we have

$$
\mathrm{M}_{\mathrm{k}}(\mathrm{x})=\frac{1}{2 \pi \mathrm{i}} \int_{\mathrm{c}-\mathrm{iT}}^{\mathrm{c}+\mathrm{iT}} \mathrm{~F}_{\mathrm{k}}(\mathrm{~s}) \frac{\mathrm{x}^{\mathrm{s}}}{\mathrm{~s}} \mathrm{ds}+\mathrm{O}\left(\frac{\mathrm{x}^{1+\varepsilon}}{\mathrm{T}}\right)
$$

Suppose $d=1 / 2-1 / \log x$. Let us shift the interval of integration to [$\mathrm{d}-\mathrm{i} \mathrm{T}, \mathrm{d}+\mathrm{iT}$]. To do this consider an integral about a closed rectangle path with vertexes in $\mathrm{d}-\mathrm{iT}, \mathrm{d}+\mathrm{iT}, \mathrm{c}+\mathrm{iT}$ and $\mathrm{c}-\mathrm{iT}$. There are two poles in $\mathrm{s}=1$ and $\mathrm{s}=1 / 2$ inside the contour. The residue at $\mathrm{s}=1$ was calculated in (19). The residue at $\mathrm{s}=1 / 2$ is equal to $\mathrm{Dx}^{1 / 2}, D$ is constant, and will be absorbed by error term (see below).

Identity (12) implies

$$
\mathrm{F}_{\mathrm{k}}(\mathrm{~s})=\mathrm{Z}(\mathrm{~s}) \mathrm{Z}^{\mathrm{k}-1}(2 \mathrm{~s}) \mathrm{L}_{\mathrm{k}}(\mathrm{~s}),
$$

where $L_{k}(s)$ is regular for $\mathfrak{R}>1 / 3$, so for each $\varepsilon>0$ it is uniformly bounded for $\mathfrak{R}>1 / 3+\varepsilon$.

Let us estimate the error term using Lemma 5 and Lemma 6. The error term absorbs values of integrals about three sides of the integration's rectangle. We take into account $\mathrm{Z}(\mathrm{s})=\zeta(\mathrm{s}) \mathrm{L}\left(\mathrm{s}, \chi_{4}\right)$. On the horizontal segments we have

$$
\begin{aligned}
& \int_{\mathrm{d}+\mathrm{iT}}^{\mathrm{c}+\mathrm{iT}} \mathrm{Z}(\mathrm{~s}) \mathrm{Z}^{\mathrm{k}-1}(2 \mathrm{~s}) \frac{\mathrm{x}^{\mathrm{s}}}{\mathrm{~s}} \mathrm{ds} \ll \\
& \ll \max _{\sigma \in[\mathrm{d}, \mathrm{c}]}^{\mathrm{Z}(\sigma+\mathrm{iT}) \mathrm{Z}^{\mathrm{k}-1}(2 \sigma+2 \mathrm{iT}) \mathrm{x}^{\sigma} \mathrm{T}^{-1} \ll} \\
& \ll \mathrm{x}^{1 / 2} \mathrm{~T}^{2 \theta-1} \log ^{4(\mathrm{k}-1) / 3} \mathrm{~T}+\mathrm{xT}^{-1} \log ^{4 / 3} \mathrm{~T},
\end{aligned}
$$

It is well-known that $\zeta(\mathrm{s}) \sim(\mathrm{s}-1)^{-1}$ in the neighborhood of $s=1$. So on the vertical segment we
have the following estimates. Near pole one can calculate that

$$
\begin{aligned}
& \int_{d}^{d+i} Z(s) Z^{k-1}(2 s) \frac{x^{s}}{s} d s \ll x^{1 / 2} \int_{0}^{1} \zeta^{k-1}(2 d+2 i t) d t \ll \\
& \ll x^{1 / 2} \int_{0}^{1} \frac{d t}{|i t-1 / \log x|^{k-1}} \ll x^{1 / 2} \log ^{k-1} x,
\end{aligned}
$$

and for the rest of the vertical segment we get

$$
\begin{aligned}
& \int_{d+i}^{d+i T} Z(s) Z^{k-1}(2 \mathrm{~s}) \frac{\mathrm{x}^{\mathrm{s}}}{\mathrm{~s}} \mathrm{ds} \ll \\
& \ll\left(\int_{1}^{\mathrm{T}}|\zeta(1 / 2+\mathrm{it})|^{4} \frac{\mathrm{dt}}{\mathrm{t}} \int_{1}^{\mathrm{T}}\left|\mathrm{~L}\left(1 / 2+\mathrm{it}, \chi_{4}\right)\right|^{4} \frac{\mathrm{dt}}{\mathrm{t}}\right)^{1 / 4} \times \\
& \times\left(\int_{1}^{\mathrm{T}}|\mathrm{Z}(1+2 \mathrm{it})|^{2(\mathrm{k}-1)} \frac{\mathrm{dt}}{\mathrm{t}}\right)^{1 / 2} \ll \\
& \ll \mathrm{x}^{1 / 2}\left(\log ^{5} \mathrm{~T} \cdot \log ^{8(\mathrm{k}-1) / 3+1} \mathrm{~T}\right)^{1 / 2} \ll \\
& \ll \mathrm{x}^{1 / 2} \log ^{3+4(\mathrm{k}-1) / 3} \mathrm{~T} .
\end{aligned}
$$

The choice $T=x^{1 / 2+\varepsilon}$ finishes the proof of (22).
The proof of (23) is similar, but due to (13) one have replace $\mathrm{k}-1$ by $\left(\mathrm{k}^{2}+\mathrm{k}-2\right) / 2$.

REFERENCES

1. Gauss C. F. Theoria residuorum biquadraticorum, Commentatio secunda Commentationes soc. reg. sc. Gotting. recentiores. - 1832. - v. 7.
2. Graham S. W., Kolesnik G. On the difference between consecutive squarefree integers Acta Arith. - 1988. - Vol. 49, N5. - P. 435-447.
3. Huxley M. N. Exponential sums and the Riemann zeta function V Proc. Lond. Math. Soc. - 2005. Vol. 90, N1. - P. 1-41.
4. Ivic A. The Riemann zeta-function: Theory and applications. Dover Publications, Mineola, New York. - 2003. - 562 p.
5. Krätzel E. Lattice points. Kluwer, Dordrecht. 1988. - 436 p.
6. Montgomery H. L. Topics in multiplicative number theory. Springer Verlag, 1971. - v. 227. - 178 p.
7. Subbarao M. V. On some arithmetic convolutions The theory of arithmetical functions, Lecture Notes in Mathematics. Springer Verlag. - 1972. - v. 251. - P. 247-271.
8. Suryanarayana D., Rao R. Sita Rama Chandra. On the true maximum order of a class of arithmetic functions Math. J. Okayama Univ. - 1975. - N17. - P. 95-101.
9. Titchmarsh E. C. The theory of the Riemann zetafunction, Ed. by D. R. Heath-Brown. $2^{\text {nd }}$ rev. edition. Oxford University Press, New-York. 1986. - 418 p .
10. Tóth L. An order result for the exponential divisor function. Publ. Math. Debrecen. - 2007. - v. 71, N1-2. - P. 165-171.
11. Wu J. Problème de diviseurs exponentiels et entiers exponentiellement sans facteur carré J. Théor. Nombres Bordx. - 1995. - v. 7, N1. - P. 133-141.

[^0]: (C) Lelechenko A.V., 2014.

