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A survey of the recent theorems on existence of regular, pseudo-regular and multi-valued solutions of the Dirichlet
problem to the Beltrami equations with degeneration in arbitrary finitely connected domains bounded by mutually
disjoint Jordan curves is given.
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1. Introduction. Here we give a survey of our recent 1+| y(z)|

results in the Dirichlet problem for the Beltrami K, (Z) =D (1.2)
equations with degeneration published in the series of 1_|'U(Z)|

papers [1]-[4]. Namely, we formulate a number of the dilatation quotient or simply the dilatation of the
criteria for existence of regular solutions to this equation (1.1). The Beltrami equation (1.1) is said to be
problem in arbitrary Jordan domains and pseudo- degenerate ifesssupK , ( Z) — 0.

regular and multi-valued solutions in arbitrary finitely
connected domains bounded by mutually disjoint
Jordan curves.

Recall that every analytic function f in a domain
D c C satisfies the simplest Beltrami equation

So, let D be a domain in the complex plane C, i.e., fz=0 (1.3)
a connected open subset of C, and let #:D — C be a with £(z)=0. If an analytic function f given in the
measurable function with | y(z)| <1 a.e. (almost unit disk D is continuous in its closure, then by the

everywhere) in D . A Beltrami equation is an equation Schwarz formula

of the form f(z):iImf(0)+L. I Ref(g“)ﬂd—;, (1.4)
f, = u(z)f, (1.1) 27”\4\:1 ¢-z ¢

where £ =3 = {6 4L, £ =A< {6 ity ) et disk D 1 deemined uy

z=x+iy and fy and f, are partial derivatives of f to a purely imaginary additive constant ic,

in x and y, correspondingly. The function x is called c=Imf(0), by its real part §({)=Ref() on the

the complex coefficient and boundary of D.
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Hence the Dirichlet problem for the Beltrami
equation (1.1) in a domain D < C is the problem on
the existence of a continuous function f:D—C
having partial derivatives of the first order a.e.,
satisfying (1.1) a.e. and such that

1im§Ref(z):¢(§) (1.5)

for a prescribed continuous function ¢:0D — R . It is

V¢ edD

obvious that if f is a solution of this problem, then the
function F(z)=f(z)+ic, ceR,is so.

The existence of homeomorphism Wll(;i solutions
was recently established for many degenerate Beltrami
equations, see, e.g., related references in the recent
monographs [6] and [7] and in the surveys [8] and [9].
Boundary value problems for the Beltrami equations
are due to the well-known Riemann dissertation in the
case of x(z)=0 and to the papers of Hilbert (1904,
1924) and Poincare (1910) for the corresponding
Cauchy—Riemann system. The Dirichlet problem for
uniformly elliptic systems was studied long ago, see,
e.g., [10] and [11]. The Dirichlet problem for
degenerate Beltrami equations in the unit disk was
studied in [12].

Throughout this paper,

B(zg.r) = {z € C:|z—zo| < r} ., Do =B(0,1),

R(Zo,rl,rz):{z eC:r1 <|Z—Zo| <r2} .

S(zo,r) = {z € C:|z—zo| = r} s S(r) = S(O,r) R

2. BMO and FMO functions. The well-known class
BMO was introduced by John and Nirenberg in the
paper [13] and soon became an important concept in
harmonic analysis, partial differential equations and
related areas; see, e.g., [14] and [15]. Recall that a real-
valued function u in a domain D in C is said to be of

bounded mean oscillation in D, abbr. ue BMO(D),
if ue Ll (D) and

1
, = Sup— —ug|dm(z) <o, 2.1)
Ju] ‘é |B|]J;|u(z) uB| (z)

where the supremum is taken over all discs B in D,
dm(z) corresponds to the Lebesgue measure in C and

1
up —Eiu(z) dm(z

We write ue BMO,y (D) if ue BMO(U) for
every relatively compact subdomain U of D (we also
write BMO or BMO, . if it is clear from the context
what D is).

Following the paper [16], see also [6] and [7], we
say that a function ¢:D—>R has finite mean

oscillation at a point zy € D if

6(2) =6 (z0 )] am

1im ——— _[
g—>0|B Z,€ | (29.¢)

(Z) <o, (2.2)

where
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¢( ZO: | J‘ ZO g (Z)
is the mean value of the function ¢(z) over the disk

B(zo,g). Note that the condition (2.2) includes the

assumption that ¢ is integrable in some neighborhood

2.3)

of the point z, . We say also that a function ¢: D - R
is of finite mean oscillation in D, abbr. ¢ € FMO(D)
or simply ¢eFMO, if ¢eFMO(z,) for all points
zp € D. We write ¢eFMO(]3) if ¢ is given in a
domain G in C such that Dc G and ¢ e FMO(z)

forall zyeD.

The following statement is obvious by the triangle
inequality.

Proposition 2.1. If, for a collection of numbers
4. €R, ce (0 &)

lim ————

£—>O|BZ g|.|‘ (20-¢) |¢ ¢g|dm <o,

2.4)

then @ is of finite mean oscillation at z .
In particular choosing in Proposition 2.1, ¢, =0,
£ €(0,£], we obtain the following statement.

Corollary 2.1. If, for a point zy €D,

Tim <o,

sa0|Bz g|~‘- (2o g|¢ |dm

2.5

then ¢ is of finite mean oscillation at z.

Recall that a point zy € D is called a Lebesgue
point of a function ¢:D — R if ¢ is integrable in a
neighborhood of z; and

#(2)~ (2 )| dm(z) =0

It is known that, almost every point in D is a Lebesgue

lim ——— I |
g—>0|B Zy,E | (205¢)

(2.6
point for every function ¢ e L! (D). Thus, we have by

Proposition 2.1 the following corollary showing that
the FMO condition is very natural.

Corollary 2.2. Every locally integrable function
¢:D—>R has a finite mean oscillation at almost

every pointin D .

Remark 2.1. Note that the function
#(z)= 10g(1/|z|) belongs to BMO in the unit disk 4,
see, e.g., [14], p. 5, and hence also to FMO . However,
#.(0) > o as & — 0, showing that condition (2.5) is
only sufficient but not necessary for a function ¢ to be
of finite Clearly,

BMO(D) c BMOy, (D) c FMO(D) and as well-

mean oscillation at z;.

known BMO,,, cL?

loc

for all pe[l,»), see, e.g.,
[14]. However, FMO is not a subclass of LIl’0 . for any

p>1 but only of Llloc, see examples in [7], p. 211.



MATHEMATICS

Thus, the class FMO
BMOy,. -
3. On regular solutions for the Dirichlet problem in

Jordan domains. If ¢({)# const, then the regular

is essentially wider than

solution of such a problem is a continuous, discrete and
Wl 1

loc

open mapping f:D — C of the Sobolev class

with its Jacobian :|fZ|2—|f2|2¢O a.e.

satisfying (1.1) a.e. and the condition (1.5). Recall that
a mapping f:D — C is called discrete if the preimage

f_l(y) consists of isolated points for every yeC,
and open if f maps every open set Uc D onto an
open set in C. The regular solution of the Dirichlet
problem (1.5) with ¢({)=c, ¢ €D, for the Beltrami
equation (1.1) is the function f(z)=c, zeD.
Theorem 3.1. Let D be a Jordan domain and
1:D — C be a measurable function with |,u(z)| <1

a.e. such that X, (Z) < Q(Z) a.e. in D for a function
Q:C—[0,] in FMO(D).
equation (1.1) has a regular solution of the Dirichlet

problem  (1.5) for each continuous function
¢:0D—>R.

Corollary 3.1. In particular, the conclusion of

Then the Beltrami

Theorem 3.1 holds if every point z eD is the

Lebesgue point of a locally integrable function
Q:C—[0,0] such that K, (z)<Q(z) ae in D.

Further we assume that K U

outside of D .

is extended by zero

Corollary 3.2. Let D be a Jordan domain and

1:D — C be a measurable function with |,u(z)| <1
a.e. such that
lim d
gli%pa (z0.¢ |I (1) S (2) dm(2) <2 G.1)
Vzy, €D

Then the Beltrami equation (1.1) has a regular solution
of the Dirichlet problem (1.5) for each continuous
function ¢:0D — R.

Theorem 3.2. Let D be a Jordan domain in C
and pu:D—>C be a measurable function with

|y( |<1 ae If K ELloc(D) and satisfies the

condition
S(z) d
j — & —w VzeD (32
0 [Kul,(z001)
for some 5(zg) e (O,d(zo)) where
d(z) = sup|z—zo| and
zeD
K, (zo)= [ 2)|dz], (33)
DNS(zg,r)
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at each point z, € D, then the Beltrami equation (1.1)

has a regular solution of the Dirichlet problem (1.5)
for each continuous function ¢:0D — R .

Corollary 3.3. Let D be a Jordan domain and
1 :D — C be a measurable function such that

k,, ()= O(logl) VzoeD  (3.4)
&

as € >0, where kZO (6‘) is the average of the function

K, (z) over S(zg,&). Then the Beltrami equation
(1.1) has a regular solution of the Dirichlet problem
(1.5) for each continuous function ¢:0D — R..

Remark 3.1. In particular, the conclusion of
Corollary 3.3 holds if

K, (z)= O{log J as z—> 1z, VzyeD (3.5)

22|

Theorem 3.3. Let D be a Jordan domain and
1D — C be a measurable

function with |,u(z)| <1 a.e. such that

[o(x m(z) <o (3.6)
D
for a convex non-decreasing function
@:[0,00] >[0,00]. If
o0
3.7

J‘ dr
T =0
5@ (7)
for some 6 > CD(O). Then the Beltrami equation (1.1)
has a regular solution of the Dirichlet problem (1.5)
for each continuous function ¢:0D — R .

Remark 3.2. By the Stoilow theorem, see, e.g.,
[17], a regular solution f of the Dirichlet problem
(1.5) for the Beltrami equation (1.1) with

K, €Lioc (D) can be represented in the form

f=hoF where h is an analytic function and F is a
homeomorphic regular solution of (1.1) in the class

Wll(;i . Thus, by Theorem 5.1 in [18] the condition (3.7)
is not only sufficient but also necessary to have a
regular solution of the Dirichlet problem (1.5) for an
arbitrary Beltrami equation (1.1) with the integral

constraints (3.6) for any non-constant continuous
function ¢:0D - R..

Setting H(t) =log @ (t), note that by Theorem 2.1

in [19] the condition (3.7) is equivalent to each of the
conditions

jH’( )% w, (3.8)
A

wdH(t)_w

£ =, (3.9)

and (3.9) implies
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1 dt
[H()= = (3.10)
o t
for some A>0, and
e
jH(—jdtzoo (3.11)
.\t
for some 6 >0,
(3.12)

IH4 -
A, (n)
for some A, >H(+0). Here, the integral in (3.9) is

understood as the Lebesgue— Stieltjes integral and the
integrals in (3.7) and (3.10)—(3.12) as the ordinary
Lebesgue integrals. Moreover, if the function
@ :[0,00] —[0,0] is non-decreasing and convex, then
all conditions (3.7)—(3.12) are equivalent each to other.

Corollary 3.4. In particular, the conclusion of
Theorem 3.3 holds if, for some
a>0,

IeaK”(Z)dm(z) <,

D
4. On pseudoregular and multi-valued solutions in
finitely connected domains. It was first noted by
Bojarski, see, e.g., section 6 of Chapter 4 in [11], in the
case of multiply connected domains the Dirichlet
problem for the Beltrami equation, generally speaking,
has no solutions in the class of continuous (simply-
valued) functions. Hence it is arose the question:
whether the existence of solutions of the Dirichlet
problem can be obtained for the case in a wider class ?
It is turned out to be that this is possible in the class of
functions having a certain number of poles at
prescribed points in D. More precisely, for a

continuous function ¢(¢)+# const, a pseudoregular

(3.13)

solution of the problem is a continuous (in
C=Cu {oo} ) discrete open mapping f:D — C in the

class Wllo’lC (outside of these poles) with the Jacobian

I (z):|fZ|2 —|f§|2 #0 ae. satisfying (1.1) a.e. and
the condition (1.5). Furthermore, one can choose in the
pseudoregular solution just n prescribed poles where n
is equal to the number of components of the boundary
of the domain D.

In finitely connected domains D in C, in addition
to pseudoregular solutions, the Dirichlet problem (1.5)
for the Beltrami equation (1.1) admits multi-valued
solutions in the spirit of the theory of multi-valued
analytic functions. We say that a continuous discrete
open mapping f:B(z9,69) > C, where

B(zg.69) =D, is a local regular solution of the

equation (1.1) if fe Wll(;lc ,

(1.1) a.e. in B(zg,&) .

The local regular solutions f:B(zg,&y)—C

Jg(z)#0 and f satisfies

and f, :B(z.,&)— C of the equation (1.1) will be
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called extension of each to other if there is a finite
chain of such solutions f; : B(z;,&)—>C, i=1...,m,

fl = fO , fm = f* and fi (Z) = fi+1 (Z) for

zeE; =B(z,&)nB(z,1.64) 2D, i=1...,m-1.

that

A collection of local regular  solutions

fj :B(zj,gj)—> C, jel,is called by us a multi-valued

solution of the equation (1.1) in D if the disks

B(zj,gj) cover the whole domain D and fj are

extensions of each to other through the collection. A
multi-valued solution of the equation (1.1) is called by
us a multi-valued solution of the Dirichlet problem

(1.5) if u(z):Ref(z):Refj(z), zeB(zj,gj),

jeJ, is a simply-valued function in D satisfying the
condition lim u(z)=¢(¢) forall {edD.
z¢

Theorem 4.1. Let D be a domain in C whose
boundary consists of n>2 mutually disjoint Jordan
curves and p:D — C be measurable function with

|,u(z)|<l a.e. If K satisfies at least one of the

conditions from Theorems 3.1-3.3, Corollaries 3.1—
3.4, Remarks 3.1 and 3.2, then the Beltrami equation
(1.1) has pseudoregular as well as multi-valued
solutions of the Dirichlet problem (1.5) for each
continuous function ¢:0D — R .

Finally, more refined results on the existence of
regular, pseudo-regular and multi-valued solutions of
the Dirichlet problem in terms of the so-called tangent
dilatations have been proved in the last papers [20] and
[21].
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UDC 511
ON THE DISTRIBUTION OF THE EXPONENTIAL DIVISOR FUNCTION

Lelechenko A. V.

L.I. Mechnikov Odessa National University, Ukraine

Let T}Ee) be a multiplicative function such that 1](:’) (pa ) = Z 1. In the paper the generalizations of z'l((e) over
d;---dg=a
the ring of Gaussian integers are introduced. The asymptotic formulas for their average orders are established.

KEY WORDS: divisor function, Gaussian integers, asymptotic formula.

O PACIIPEIEJIEHMY SKCIIOHEHIIUAJIBHON ®YHKIIAW TUBU30POB

Jleneuenko A.B.

[Tycts r]((e) - MyJIBTHIUIMKATHBHAS (DYHKIHS, TaKast 9To rl((e) (pa ) = z 1. B pabote cogepxutcsi 006001enne
dl'“dk =a
rl((e) Ha KOJIbIIO ['ayCCOBBIX IIEIIBIX YHCE. Y CTaHOBIICHA ACUMIITOTHYECKast (hopMyJia I UX CPEIHUX MOPSIKOB.

KJIFOYEBKBIE CJIOBA: dyHkuust nenureneit, [ayccoBbl Lenble 4nciia, acuMIToTuaeckas hopmyia.

PO PO3MNOALI EKCIIOHEHIIIAJIBHOI ®YHKIIII TMBA30PIB

Jleneuenko A.B.
o e . . e . e
Hexait T1(< ) _ MYJbTHIDTIKATHBHA (YHKIIiS, TaKa 0 TIE )(pa ) = Z 1. B po0OoTi HaBeeHO y3arajJbHEHHs Tl(< )
dl...dk:a
Ha KinbIie ["aycoBux miux uucen. OTpruMaHa acCUMITOTHYIHA GopMyJIa JUIs IX CEPeIHIX MOPSIKIB.

KJIFOYOBI CJIOBA: dyskuis ninpHUKIB, ['aycoBi misi yncna, acuMIToTudHa popmyia.

1. Introduction.  Exponential  divisor  function

7.7 7 introduced by Subbarao in [7] is a The best modern result is &) , <1057/4785 [2].

multiplicative function such that One can consider multidimensional exponential
7©p*) = r(a), divisor function r](f) : Z — Z such that

where 7:7Z — 7Z stands for the usual divisor function, 1156) () = 7 (a),

7(n)= Z d\nl' Erdds estimated its maximal order and where 7 (n) is a number of ordered k-tuples of

Subbarao proved an asymptotic formula for positive integers (dy,...,d; ) such that d;---d, =n. So

(e) ;
ZnéxT (n). Later Wu [11] gave more precise © Erée). Toth [10] investigated asymptotic

timation:
estmation P properties of rl((e) and proved that for arbitrarily & >0
Zr(e)(n)—Ax+Bxl/2+O(x 1,2 ], © 12 Wi tE
o Zz’k (n)=Cyx+x Sk,z(logx)+0(x k ),

where A and B are computable constants, 6, , is an nsx

exponent in the error term of the estimation

Dantexl = CQx+£(1/2)x1? +o(x91,2+5) _

© Lelechenko A.V., 2014.
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where S, _, is a polynomial of degree k-2 and
wy =(2k-1)/(4k+1).

In the present paper we  generalize
multidimensional exponential divisor function over the
ring of Gaussian integers Z[i]. Namely we introduce

multiplicative functions
727, 6zl >z, 72> 7
such that

(0" =t (a),

6" =7 (a), (M

€L 0N = @,
where p is prime over Z, p is prime over Z[i],
t (a) is a number of ordered k-tuples of non-
associated in pairs Gaussian integers (9y,...,0;) such
that 9;---0 =a

The aim of this paper is to provide asymptotic
formulas for

Ym, Y@, Y @,

n<x N(a)<x N(a)<x

A theorem on the maximal order of multiplicative
functions over Z[i], generalizing [8], is also proved.

Notation. Let us denote the ring of Gaussian
integers by Z[i], N(a+bi) = a?+b%.

In asymptotic relations we use ~, =<, Landau
symbols O and o, Vinogradov symbols < and > in
their usual meanings. All asymptotic relations are

written for the argument tending to the infinity.
Letters p and g with or without indexes denote

Gaussian primes; p and q denote rational primes.

As usual (£(s) is Riemann zeta-function
and L(s, y) is Dirichlet L-function for some character
x. Let y, be the single nonprincipal character
modulo 4, then

Z(s) = ¢ (s)L(s, 24)

is Hecke zeta-function for the ring of Gaussian
integers.

Real and imaginary components of the complex s
are denoted as o:=Rs and t:=3s, so s=o +it.

Notation Z’ means a summation over non-

associated elements of Z[i], and H’ means the

similar relative to multiplication. Notation a~Db
means that a and b are associated, that is
a/b e {£l,+i}. But in asymptotic relations ~ preserve
its usual meaning.

Letter y denotes Euler—Mascheroni constant.
Everywhere ¢ >0 is an arbitrarily small number (not
always the same).

We write f+g for the notation of the Dirichlet
convolution

(fxg)(n) = f(d)g(n/d).

dn

2. Preliminary lemmas. We need following auxiliary
results.

Lemma 1. Gaussian integer p is prime if and only
if one of the following cases complies:

. pr~l+i,

. p~p,where p=3(mod4),

. N(p) =p, where p =1(mod4).
In the last case there are exactly two non-associated
Py and Py such that N(p;) =N(py)=p.

Proof. See [1].

Lemma 2.
DI R @
Np=<x 08X
3 logN(p) ~x, 3)
N(p)<x

Proof. Taking into account Gauss criterion and the
asymptotic law of the distribution of primes in the
arithmetic progression we have

Z' l~#{p|pz3(mod4),p3«/;}+
N(p)<x
+2#{p|p51(m0d4),pr}~
Jx +2 x ==
dAlogx/2 g#)logx logx

A partial summation gives us the second statement
of the lemma.

Lemma 3. Let F:Z —>C be a multiplicative
function such that F(p*) = f(a), where f(n) < n? for
some [>0. Then
logF(n)logl logf
ogF(mloglogn _ _ _logf(n)

lim sup “4)
n—o logn n>1 n
Proof. See [8].
Lemma 4. Let f(t)>0. If
T
[ fdt < g(m),
where g(T)=T%log”T, a >1, then

Tf(t log? T ifa=1,
I(T) = | O 4 « gl (5)

It T oghT if a>1.

Proof. Let us divide the interval of integration into
parts:
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1g2 k
(ms Yy jT/z @dm

k+1
o T/2
log2 10g2 k
(T/2 )
<y T/2k+1'[ f(t)dt<< > & EyREy
k=0 k=0

Now the lemma's statement follows from
elementary estimates.

Lemma 5. Letr T>10 and |d-1/2]<1/1ogT.
Then we have the following estimates

J.d+lT|é/( )| & o logST

d+iT
I |L(s 4)| — K 10g

for growing T .
Proof. The statement is the result of the application
of Lemma 4 to the estimates [6].

Lemma 6. Let 0>0 be such value that

c/2+iy<t? as t—oow, and let n>0 be
arbitrarily small. Then
|t|1/2—(1—29)0’ e [091/2],
roel . ell/2.1-n],
20(1-0) ;. 2/3 B
[t log””|t], oe[l-n,1],
log?3|t], o>1.

The same estimates are valid for L(s, y4) also.

Proof. The statement follows from Phragmén—
Lindelo6f principle, exact and approximate functional
equations for £'(s) and L(s, y4). See [4] and [9] for
details.

The best modern result [3] is that § <32/205+¢.
If Riemann hypothesis holds for ¢ and for L(s, x4)
then < ¢.

3. Main results. The following theorem generalizes
Lemma 3 to Gaussian integers; the proof's outline
follows the proof of Lemma 3 in [8].

Theorem 7. Let F:Z[i] > C be a multiplicative

function such that F(p*)=1f(a), where f(n) < n/ for
some [>0. Then

log F(a)loglog N(a) _ sup logf(n) _ K

limsu
P g N(a) e n

a—>0
Proof. Let us fix arbitrarily small ¢ >0 .
Firstly, let us show that there are infinitely many «
such that

Q)

log F(e)loglog N(ex)
log N(«x)
By definition of K; we can choose 1 such that
(logf())/1>K; —&/2.
It follows from (3) that for x > 2 inequality

>Kf—€.

Z'N(p)Sx log N(p) > Ax

holds, where 0 <A <1.
Let q be an arbitrarily large Gaussian prime,

N(q) = 2. Consider
r= Zv 1, H' p.
N(p)<N(q) N(p)<N(q)
Then F (@)= (f(1))" and we have

logN(a) _ '
- X

N(p)<N(q)
log N() log f(1)
logN(@@) 1

o=

rlogN(q) > log N(p) > AN(q), (7)

logF(a) =rlogf(l) > ®)

But (7) implies

log A +log N(q) < log

w <loglogN(«),

so logN(q) <loglogN(a)—logA . Then it follows
from (8) that
log N(«) logf(1)
loglogN(a)—log A 1
and since (logf(1))/1>K;—&/2 and A <1 we have
logF(a)loglog N(«) - loglog N(&x)
logN(&) loglogN(a)—1log A
x(Keg—&/2)>Kp —¢.
Secondly, let us show the existence of N(g) such
that for all n > N(g) we have
log F(n)loglog N(«)
log N(«)
Let us choose 0 €(0,6) and 7€(0,8/(1+0)).
Suppose N(«) =3, then we define
0= (@)= (1+0)Ky ’
loglog N(x)
By choice of 6 and 77 we have

logF(a) >

<(1+e)K;.

Q:=02(a)=1log N(a).

Q% = exp(wlog 2) = exp((1-)(1+ )Kg ) > e |
Suppose that the canonical expansion of « is
ar bl bs
Prdp s
where N(p, )< €2 and N(q)> 2. Then
Fla) _ flay) f(by)
b
N?(@) GNP (py) 1k Nk (qy)
Since 2% > ¢ f and K; > (logf(by))/ by then
fby) by _ fby) _|
Na)bk (qk) Qrubk erbk
and it follows that /7, <1. Consider /7;.

a
aNp11

Z:H1‘H2. (9)

From the
statement of the theorem we have f(n) < n/ , SO
f(ay) ap

<
Nk (py) (aka’)ﬂ

< o P

Then
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log IT) < .Qlogw_ﬂ <
<log" T N(a)logloglog N(a) =
o log N()

loglogN(«x) )

Finally by (9) we get
logF(n)=wlogn+log 77, +log /1, =

_(1+0)K¢logn N (e-0)K;logn
loglogn '

loglogn

Lemma 8.
78 (n) < n,
9 (a) < N¥(a), (10)
£ () < N(a).
Proof. Taking
7 (n)<n and t (n) < n? we have that

into account trivial estimates

suplog 7 (n)n < oo, suplogty (n)n < oo,
nl1 n>1
Now the estimates (10) follows from Theorem 7
and Lemma 3.

We are ready to provide asymptotic formulas for
sums of rili) (n), tff) (), tgi) (a) . Let us denote
Gy (8):= D e (™, Ty (x):= D7 (n),
n

n<x

Fie(s):= D (@N (@), My(x):= > (),

a N(a)<x

Fie(8) = Y HQ(@N (@), My ()= 37 ().
a N(a)<x

Lemma9.
Gu(9) = () TR0 7+ 2 3

4,712

4_g13_ 512
y é,(Sk —6k°—5k +6k)/24(5s)K*k(s),

() = 266)25 )7 )2 (50)x

3,612 342
(75K 60 Z0O—AH3K) 279 (12

4 3 2
70K =26k +57k _34k)/24(8s)Hk(s),

Fup () = Z(s)20 K22 12y 7124K)/2 3

4, 7.2
%7K +7k —61<)/12(4S)X

4_¢1.3_ 512
%75k —6k> -5k +6k)/24(55)H*k(s)’

(13)

where Dirichlet series H(s) are absolutely convergent
for Ms>1/9 and Dirichlet series for Hx«(s), Kx(s)

are absolutely convergent for Rs >1/6.
Proof. The statements can be verified by direct
computation of Bell series of corresponding functions.

For example, Bell series for tf(e) have the following

representation:
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[itie)(pa)xa](l_x)(l‘Xz)k“(l— WSR2,

a=0
3,612 3_412
><(1_X<5)(—1< +6k“—-5k)/6 ><(1_)(7)(1< —4k“+3k)/2

4 3 2
X(I—XS)(3k —26k’+57k--34k)/24 =1+0(X9).

Theorem 10.

Ty (X) = Apx + Xl/sz (log X)O(ka+8

), (14)

where P, is a polynomial, degP, :(k2+k—4)/ 2,

and

k2 +k-1

2k2 +2k+1

Proof. Let 1=(k*>+k-2)/2, a=(1,2,....2).
IR

Wk =

Identity (11) implies
o) =)« f,

T (x) = Y T(a;x/n)f (n) (15)

n<x
where
r@an)= Y 1,
dodlz‘ . ~d12 =n
T(a;x):= Zr(a; n)= Z 1,
n<x dOdlz' ~d,<x

and the series Z:Zlf (n)n~“ are absolutely convergent
for o>1/3 . Due to [5] we have

T(a;x) = C;x + x/2Q(log x) + O(x "k %), (16)

where Q is a polynomial, degQ =1-1, and
_21+1

e
For k>2 we have wy >1/3.

Wk

One can get the following estimates:

3 % _ O[X—zmg 3 ﬁ/(;lJr)g J — 023y, (17)

n>x n>x
fmlog’n _ [ _yere~of@loghn | _y6ss
> 7 OX > e | OX )-(18)
n>x n>x
for a>0.

Finally, substituting estimates (16), (17) and (18)
into (15) we get
Ty (0= 3 10 72 5~ f)QMlogx /m) |

n a2

n<x n<x

O(xwk+8) = A x+x"2P, (logx) + O(ka+5

).

Lemma 11.
resF (s)x® /s =Cyx,  resBy (s)x® /s =Cxx, (19)
s=1 s=1

where
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o = TS —Tk(a)_fk(a"l)} (20)

‘ 41;[{ agz N*(p)

Co = 1712 S —tk(a)"tk(a"l)]. Q1)
‘ 41;[[ 2 e

Proof. As a consequence of the representation (12)
we have

F(s) _ o (@ |,
76 H(HZ J(l P

P a:lNas(p)
_ H“’rk(a)—rk(a—l)}
R

and so function EF_(s)/Z(s) is regular in the
neighbourhood of s =1. At the same time we have

res Z(s) = L(1, 74 )res £ (s) = -,
s=1 s=1 4

which implies (20). The proof of (21) is similar.

Theorem 12.

M (x) = Cp x + O(x /2 1og>4&=D3x), (22)

2
where C, and Cs were defined in (20) and (21).

Proof. By Perron formula and by (10) for
c=1+1/logx, logT <logx we have

(23)

1 c4iT x5 X1+g
M, (x)=— F (s)—ds+0O .
0= [ RO ( -

Suppose d =1/2—-1/logx . Let us shift the interval
of integration to [d—iT,d +iT]. To do this consider an
integral about a closed rectangle path with vertexes in
d-iT, d+iT, c+iT and c—iT . There are two poles
in s=1 and s=1/2 inside the contour. The residue at
s =1 was calculated in (19). The residue at s=1/2 is
equal to Dx!/? , D is constant, and will be absorbed by
error term (see below).

Identity (12) implies

k-1
Fc(s) = Z()Z™ " (25)Lk (s)
where L, (s) is regular for Ms>1/3, so for each
£ >0 itis uniformly bounded for Rs>1/3+¢.

Let us estimate the error term using Lemma 5 and
Lemma 6. The error term absorbs values of integrals
about three sides of the integration's rectangle. We take
into account Z(s) = (s)L(s, x4). On the horizontal

segments we have

+HT s
[ Moz s ds <«
d+iT S

< max Z(o+iT)Z¥ 2o +2iT)x° T «

oeld,c]
< X220 g DBT 4 x T Nog*3T,

It is well-known that ¢£(s)~ (s—l)_1 in the
neighborhood of s=1. So on the vertical segment we

90

have the following estimates. Near pole one can
calculate that

d+i s 1
jd 7057571 (26) X ds < x12 jogk‘l 2d +2it)dt <
S

172 ! dt
R P ]
lit—1/logx |
and for the rest of the vertical segment we get

< < Xl/zlogk_lx,

d+iT S
[ 275 26) X ds <
d+i S

1/4
T o4 dt T . 4 dt
<<(J1 [S(1/2+it)] T-[l |L(1/2+it, y4) | TJ x

1/2
T
x( L | Z(1+ 2it) PKD %j <

12
< X2 (logST . 1Ogg(k—1)/3+1T) <

< x1210gH40D3T

The choice T = x"?*% finishes the proof of (22).

The proof of (23) is similar, but due to (13) one
have replace k-1 by (k2 +k-2)/2.
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