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      A survey of the recent theorems on existence of regular, pseudo-regular and multi-valued solutions of the Dirichlet 
problem to the Beltrami equations with degeneration in arbitrary finitely connected domains bounded by mutually 
disjoint Jordan curves is given. 
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К ЗАДАЧЕ ДИРИХЛЕ В КОНЕЧНОСВЯЗАННЫХ ОБЛАСТЯХ 

Ковтонюк Д.А., Петков И.В., Рязанов В.И., Салимов Р.Р. 

В работе приведен обзор теорем существования регулярных, псевдорегулярных и многозначных решений 
задачи Дирихле для вырожденных уравнений Бельтрами в произвольных конечносвязанных областях 
ограниченных взаимно непересекающимися  Жордановыми кривыми. 
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ДО ЗАДАЧІ ДІРІХЛЕ У СКІНЧЕНО ЗВ'ЯЗАНИХ ОБЛАСТЯХ 

Ковтонюк Д.А., Петков І.В., Рязанов В.І., Салимов Р.Р. 

У роботі наведено огляд теорем існування регулярних, псевдорегулярних і багатозначних рішень задачі 
Діріхле для вироджених рівнянь Бельтрамі в довільних конечносвязанних областях обмежених взаємно 
непересічними жорданова кривими. 
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1. Introduction. Here we give a survey of our recent 
results in the Dirichlet problem for the Beltrami 
equations with degeneration published in the series of 
papers [1]–[4]. Namely, we formulate a number of 
criteria for existence of regular solutions to this 
problem in arbitrary Jordan domains and pseudo-
regular and multi-valued solutions in arbitrary finitely 
connected domains bounded by mutually disjoint 
Jordan curves.      
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the dilatation quotient or simply the dilatation of the 
equation (1.1). The Beltrami equation (1.1) is said to be 
degenerate if  esssup K z   .  

    Recall that every analytic function  in a domain 
 satisfies the simplest Beltrami equation  

f
D C

zf  0                                 (1.3)      So, let  be a domain in the complex plane C , i.e., 
a connected open subset of C , and let 

D
: D C   be a 

measurable function with  z 1

with  z 0  . If an analytic function  given in the 

unit disk  is continuous in its closure, then by the 
Schwarz formula 

f

D   a.e. (almost 

everywhere) in . A Beltrami equation is an equation 
of the form  
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 zf z zf     (1.1) 

where  z x y
1

f f f if
2

    ,  z x
1

f f f if
2

     see, e.g., Section 8, Chapter III, Part 3 in [5]. Thus, the 
analytic function f in the unit disk  is determined, up 
to a purely imaginary additive constant ic , 

D

 c Im f 0 , by its real part    Ref    on the 

boundary of . D

y , 

 and  and  are partial derivatives of  

in  and , correspondingly. The function 

z x iy 

x y
xf yf f

  is called 

the complex coefficient and  
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1
z z

B z , 
 


  dm z         (2.3)      Hence the Dirichlet problem for the Beltrami 

equation (1.1) in a domain D  is the problem on 
the existence of a continuous function  
having partial derivatives of the first order a.e., 
satisfying (1.1) a.e. and such that  

C
f : D C is the mean value of the function  over the disk  z

 0B z , . Note that the condition (2.2) includes the 

assumption that   is integrable in some neighborhood 

of the point . We say also that a function 0z : D R   

is of finite mean oscillation in , abbr. D  FMO D  

or simply FMO  , if  for all points  0zFMO 

0z D . We write  FMO D   if   is given in a 

domain  in  such that G C D G  and  0FMO z   

for all 0z D . 

   
z
lim Ref z


 


  D   (1.5) 

for a prescribed continuous function : D R   . It is 

obvious that if  is a solution of this problem, then the 
function , , is so.  

f
f   F z z ic  c R

     The existence of homeomorphism  solutions 

was recently established for many degenerate Beltrami 
equations, see, e.g., related references in the recent 
monographs [6] and [7] and in the surveys [8] and [9].  
Boundary value problems for the Beltrami equations 
are due to the well-known Riemann dissertation in the 
case of  and to the papers of Hilbert (1904, 

1924) and Poincare (1910) for the corresponding 
Cauchy–Riemann system. The Dirichlet problem for 
uniformly elliptic systems was  studied long ago, see, 
e.g., [10] and [11]. The Dirichlet problem for 
degenerate Beltrami equations in the unit disk was 
studied in [12].  

1,1
locW

 z 

The following statement is obvious by the triangle 
inequality. 

Proposition 2.1. If, for a collection of numbers 
R  ,  00,  ,  0

 
    0B z ,0 0

1
lim z dm z

B z ,


 


   ,    (2.4) 

then   is of finite mean oscillation at . 0z

      In particular choosing in Proposition 2.1, 0  , 

 00,  , we obtain the following statement.       Throughout this paper,  

     0D B 0,1 Corollary 2.1. If, for a point ,  0z D
0 0B z , r z C: z z r    , ,  

 
    0B z ,0 0

1
lim z dm z

B z , 



  ,    (2.5)    0 1 2 1 0 2R z , r , r z C:r z z r     . 

   0 0S z , r z C: z z r    , ,     S r S 0, r
then   is of finite mean oscillation at . 0z

2. BMO and FMO functions. The well-known class 
 was introduced by John and Nirenberg in the 

paper [13] and soon became an important concept in 
harmonic analysis, partial differential equations and 
related areas; see, e.g., [14] and [15]. Recall that a real-
valued function u  in a domain D  in C  is said to be of 

bounded mean oscillation in , abbr. 

BMO

D  u BMO D , 

if  and   1
loc Du L

Recall that a point  is called a Lebesgue 

point of a function 
0z D

R: D   if   is integrable in a 

neighborhood of  and  0z

 
      0

0B z ,0 0

1
lim z z dm z 0

B z , 
 


  .   (2.6) 

It is known that, almost every point in  is a Lebesgue 

point for every function . Thus, we have by 

Proposition 2.1 the following corollary showing that 
the FM  condition is very natural. 

D

 1L D 

O
   B

B B

1
u : sup u z u dm z

B     ,  (2.1) 

Corollary 2.2. Every locally integrable function 
: D R   has a finite mean oscillation at almost 

every point in . D

where the supremum is taken over all discs  in , 
 corresponds to the Lebesgue measure in  and  

B D

 dm z C

   B
B

1
u u z dm

B
  Remark 2.1. Note that the function 

   z log 1 z   belongs to  in the unit disk BMO  , 

see, e.g., [14], p. 5, and hence also to . However, FMO

 0    as 0  , showing that condition (2.5) is 

only sufficient but not necessary for a function   to be 

of finite mean oscillation at . Clearly, 0z

    FMO D  
 

locMO
p

c locL

BMO D

BM

B D

loO

 and as well-

known  for all p 1, 
pL

, see, e.g., 

[14]. However,  is not a subclass of  for any FMO loc

p 1  but only of , see examples in [7], p. 211. 1
locL

z . 

We write  if  for 

every relatively compact subdomain U  of  (we also 
write  or  if it is clear from the context 

what  is). 

 locu BMO D

locBMO

 u BMO U

D
BMO

D
Following the paper [16], see also [6] and [7], we 

say that a function : D R 
z D

 has finite mean 

oscillation at a point  if  0

 
      0

0B z ,0 0

1
lim z z dm z

B z , 
 


    ,  (2.2) 

where  
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Thus, the class FM  is essentially wider than 
. 

O

 

D C

locBMO
at each point 0z D , then the Beltrami equation (1.1) 

has a regular solution of the Dirichlet problem (1.5) 
for each continuous function : D R   . 3. On regular solutions for the Dirichlet problem in 

Jordan domains. If , then the regular 

solution of such a problem is a continuous, discrete and 

open mapping  of the Sobolev class 

with its Jacobian 

  const

 

f : 1,1
locW  

2 2
f z zJ z f f 0

Corollary 3.3. Let  be a Jordan domain and D
: D C   be a measurable function such that 

 
0z

1
k O log


   
 

       0z D        (3.4) 

    a.e. 

satisfying (1.1) a.e. and the condition (1.5). Recall that 
a mapping  is called discrete if the preimage 

 consists of isolated points for every 

f : D 

as 0  , where  
0zk   is the average of the function 

 K z  over  0S z , . Then the Beltrami equation 

(1.1) has a regular solution of the Dirichlet problem 
(1.5) for each continuous function : D R   . 

C

 1f y y C , 

and open if  maps every open set  onto an 
open set in . The regular solution of the Dirichlet 

problem (1.5) with , 

f
C

U D
Remark 3.1. In particular, the conclusion of 

Corollary 3.3 holds if 
    c D  , for the Beltrami 

equation (1.1) is the function  f z  c z D, .  
0

1
K z O log

z z
 

    
  0 0as z z z D    (3.5) 

Theorem 3.1. Let  be a Jordan domain and D

: D
 

C   be a measurable function with  z 1   

a.e. such that  a.e. in  for a function 

Theorem 3.3. Let  be a Jordan domain and D
: D C   be a measurable  K z  Q z D

function with  z 1  a.e. such that   Q : C 0,   in  DFMO . Then the Beltrami 

equation (1.1) has a regular solution of the Dirichlet 
problem (1.5) for each continuous function 

    
D

K z dm z      (3.6) 

: D R .    for a convex non-decreasing function 

   : 0, 0,    . If Corollary 3.1. In particular, the conclusion of 
Theorem 3.1 holds if every point 0z D  is the 

Lebesgue point of a locally integrable function 
 1

d




 




      (3.7) 

 Q : C  0,  such that   K z Q z    a.e. in . D
for some  0  . Then the Beltrami equation (1.1) 

has a regular solution of the Dirichlet problem (1.5) 
for each continuous function : D R   .  

 
       Further we assume that K  is extended by zero 

outside of . D
Remark 3.2. By the Stoilow theorem, see, e.g., 

[17], a regular solution  of the Dirichlet problem 
(1.5) for the Beltrami equation (1.1) with 

 can be represented in the form 

f

 1
locK L D 

f h F 

1,1
locW

: D

 where  is an analytic function and F  is a 
homeomorphic regular solution of (1.1) in the class 

. Thus, by Theorem 5.1 in [18] the condition (3.7) 

is not only sufficient but also necessary to have a 
regular solution of the Dirichlet problem (1.5) for an 
arbitrary Beltrami equation (1.1) with the integral 
constraints (3.6) for any non-constant continuous 
function 

h

R   . 

Corollary 3.2. Let  be a Jordan domain and D

: D C   be a measurable function with  z 1   

a.e. such that 

     
 0B z ,0 0

0

1
lim K z dm z

B z ,

z D


 

 

 

        (3.1) 

Then the Beltrami equation (1.1) has a regular solution 
of the Dirichlet problem (1.5) for each continuous 
function : D R   . 

Theorem 3.2. Let  be a Jordan domain in  
and 

D C
: D C   be a measurable function with 

 z 1
       Setting    H t log t , note that by Theorem 2.1 

in [19] the condition (3.7) is equivalent to each of the 
conditions  

  a.e. If  and satisfies the 

condition 

 1
loc DK L

 

 0z

00 1

dr

K z , r




   0   dt

H t
t




   ,   (3.8) z D          (3.2) 

 dH t

t




  ,   (3.9) for some     0z 0,d z  0  where 

 0 0
z D

d z sup z z


   and 
and (3.9) implies 

   
 0

01
D S z ,r

K z , r K z d 


  z ,      (3.3) 
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 
2

dt
H t

t



     (3.10) 

for some , and 0 

0

1
H dt

t


    
     (3.11) 

for some 0  , 

 1

d

H









     (3.12) 

for some . Here, the integral in (3.9) is 

understood as the Lebesgue– Stieltjes integral and the 
integrals in (3.7) and (3.10)–(3.12) as the ordinary 
Lebesgue integrals. Moreover, if the function 

 H 0  

   : 0, 0,    is non-decreasing and convex, then 

all conditions (3.7)–(3.12) are equivalent each to other. 

Corollary 3.4. In particular, the conclusion of 
Theorem 3.3 holds if, for some 

0  , 
   K z

D

e dm z   .              (3.13) 

      4. On pseudoregular and multi-valued solutions in 
finitely connected domains.  It was first noted by 
Bojarski, see, e.g., section 6 of Chapter 4 in [11], in the 
case of multiply connected domains the Dirichlet 
problem for the Beltrami equation, generally speaking, 
has no solutions in the class of continuous (simply-
valued) functions. Hence it is arose the question: 
whether the existence of solutions of the Dirichlet 
problem can be obtained for the case in a wider class ? 
It is turned out to be that this is possible in the class of 
functions having a certain number of poles at 
prescribed points in D. More precisely, for a 
continuous function , a pseudoregular 

solution of the problem is a continuous (in 

  const  

 C C   ) discrete open mapping f : D C  in the 

class  (outside of these poles) with the Jacobian 1,1
locW

  2 2 0f z zJ z f f   a.e. satisfying (1.1) a.e. and 

the condition (1.5). Furthermore, one can choose in the 
pseudoregular solution just n  prescribed poles where n 
is equal to the number of components of the boundary 
of the domain D. 
     In finitely connected domains  in , in addition 
to pseudoregular solutions, the Dirichlet problem (1.5) 
for the Beltrami equation (1.1) admits multi-valued 
solutions in the spirit of the theory of multi-valued 
analytic functions. We say that a continuous discrete 
open mapping 

D C

 0 0,f : B z 

1,1
loc

C , where 

, is a local regular solution of the 

equation (1.1) if f W , 

 0 0B z , D 

   fJ z 0  and f  satisfies 

(1.1) a.e. in B z 0 0, . 

         The local regular solutions  

and  of the equation (1.1) will be 

called extension of each to other if there is a finite 
chain of such solutions , 

 0 0f : B z , C 

 f : B z , C   

 i i if : B z , C  i 1, , m  , 

that 1 0f f , mf f  and    i 1f zi f z  for 

   i i: B z i B i 1 i 1z ,  z E ,     , . 

A collection of local regular solutions 

i 1, , m 1 

 j jz , jf : B  C j, J , is called by us a multi-valued 

solution of the equation (1.1) in D  if the disks 

 j j,B z   cover the whole domain  and  are 

extensions of each to other through the collection. A 
multi-valued solution of the equation (1.1) is called by 
us a multi-valued solution of the Dirichlet problem 

(1.5) if 

D jf

     jz Ref z u z Ref ,  j jz B z , , 

j J , is a simply-valued function in  satisfying the 

condition 

D

   
z
lim


u z  


  for all D 

D
n 2

. 

      Theorem 4.1. Let  be a domain in  whose 
boundary consists of  mutually disjoint Jordan 
curves and 

C

: D C   be measurable function with 

 z 1   a.e. If K satisfies at least one of the 

conditions from Theorems 3.1–3.3, Corollaries 3.1–
3.4, Remarks 3.1 and 3.2, then the Beltrami equation 
(1.1) has pseudoregular as well as  multi-valued 
solutions of the Dirichlet problem (1.5) for each 
continuous function : D R   . 

Finally, more refined results on the existence of 
regular, pseudo-regular and multi-valued solutions of 
the Dirichlet problem in terms of the so-called tangent 
dilatations have been proved in the last papers [20] and 
[21]. 
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ON THE DISTRIBUTION OF THE EXPONENTIAL DIVISOR FUNCTION 
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Let (e)
k  be a multiplicative function such that  

1 k

(e) a
k

d d a

p 1


 


. In the paper the generalizations of (e)
k over 

the ring of Gaussian integers are introduced. The asymptotic formulas for their average orders are established. 
 
 
KEY WORDS: divisor function, Gaussian integers, asymptotic formula. 
 
 
 

О РАСПРЕДЕЛЕНИИ ЭКСПОНЕНЦИАЛЬНОЙ ФУНКЦИИ ДИВИЗОРОВ 

Лелеченко А.В. 

 Пусть (e)
k  - мультипликативная функция, такая что  

1 k

(e) a
k

d d a

p 1


 


. В работе содержится обобщение 

(e)
k  на кольцо Гауссовых целых чисел. Установлена асимптотическая формула для их средних порядков. 

 
КЛЮЧЕВЫЕ СЛОВА: функция делителей, Гауссовы целые числа, асимптотическая формула. 
 
 
 

ПРО РОЗПОДІЛ ЕКСПОНЕНЦІАЛЬНОЇ ФУНКЦІЇ ДИВИЗОРІВ 

Лелеченко А.В. 

Нехай (e)
k

 

– мультиплікативна функція, така що  
1 k

(e) a
k

d d a

p 1


 


. В роботі наведено узагальнення (e)
k  

на кільце Гаусових цілих чисел. Отримана асимптотична формула для їх середніх порядків. 
 
КЛЮЧОВІ СЛОВА: функція дільників, Гаусові цілі числа, асимптотична формула.  
 
 
 
1. Introduction. Exponential divisor function 

The best modern result is 1,2 1057 / 4785  [2]. (e) :    introduced by Subbarao in [7] is a 
multiplicative function such that  One can consider multidimensional exponential 

divisor function  such that  (e)
k :  (e) a(p ) = (a),   

where :  

d|n
1

(e) (n)

 stands for the usual divisor function, 

. Erdös estimated its maximal order and 

Subbarao proved an asymptotic formula for 

. Later Wu [11] gave more precise 

estimation:  

(n) =

n x

(e) a
kk (p ) = (a),   

where k (n)  is a number of ordered k -tuples of 

positive integers  such that . So 1 k(d , ,d ) 1 kd d = n
(e)
2

(e)  . Toth [10] investigated asymptotic 

properties of (e)
k  and proved that for arbitrarily > 0   

(e) 1/2 1,2

n x

(n) = Ax Bx O x ,
 






    
    w(e) 1/2 k

k k 2k
n x

(n) = C x x S (log x) O x ,
 



   

where  and  are computable constants, A B 1,2  is an 

exponent in the error term of the estimation 

1/2 1,2
2ab

1 = (2)x (1/ 2)x O xx
 

 
       .  

____________________________________________ 
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where  is a polynomial of degree  and 

. 
k 2S 

(2k 1)

k 2

kw = / (4k 1) 
We write  for the notation of the Dirichlet 

convolution  

f g

In the present paper we generalize 
multidimensional exponential divisor function over the 
ring of Gaussian integers . Namely we introduce 

multiplicative functions 

[i] d|n

(f g)(n) = f (d)g(n / d).  

2. Preliminary lemmas. We need following auxiliary 
results. (e)

*k :   ,   ,  (e)
k : [i] t

(e)
*k : [i] t

 
such that        Lemma 1. Gaussian integer  is prime if and only 

if one of the following cases complies:  

p

(e) a
k*k

(e) a
kk

(e) a
k*k

(p ) = (a),

( ) = (a),

( ) = (a),





t

t p

t p t

   (1) 
 1 ip ,  

 pp , where p 3(mod 4) ,  
 N( ) = pp , where p 1(mod 4) .  

In the last case there are exactly two non-associated 
 and  such that 1p 2p 1 2N( ) = N( ) = pp p .  where p  is prime over  ,  is prime over , 

 is a number of ordered -tuples of non-

associated in pairs Gaussian integers ( ,  such 

that  

p [i]

k )
k (a)t k

1 ,d d

1 k = ad d

Proof. See [1]. 
 

      Lemma 2.  

N( ) x

x
1'

log x



p

The aim of this paper is to provide asymptotic 
formulas for  

,      (2) 

N( ) x

log N( ) x,'



p

p      (3) (e)
*k

n x

(n)

 ,  (e)

k
N( ) x

( )'





 t ,  (e)
*k

N( ) x

( )'





 t . 

Proof. Taking into account Gauss criterion and the 
asymptotic law of the distribution of primes in the 
arithmetic progression we have  

A theorem on the maximal order of multiplicative 
functions over , generalizing [8], is also proved. [i]

 
 

N( ) x

1 # p | p 3(mod 4), p x'

2# p | p 1(mod 4), p x

x x
2 =

(4)log x / 2 (4)log x log x 



 

x
.

  

  




p







 

      Notation. Let us denote the ring of Gaussian 

integers by , [i] 2 2N(a bi) = a b  . 

In asymptotic relations we use  , , Landau 
symbols  and , Vinogradov symbols  and   in 
their usual meanings. All asymptotic relations are 
written for the argument tending to the infinity. 


O o

      A partial summation gives us the second statement 
of the lemma. Letters  and q  with or without indexes denote 

Gaussian primes; 

p

p  and  denote rational primes. q  
      Lemma 3. Let  be a multiplicative 

function such that , where f (

F :  
ap ) = f (a)F( n) n  for 

some > 0 . Then  

As usual (s)  is Riemann zeta-function 

and L(s, )  is Dirichlet L-function for some character 

 . Let 4  be the single nonprincipal character 

modulo 4, then  
n 1n

log F(n)log log n logf (n)
= .lim sup sup

log n n
 (4) 

4Z(s) = (s)L(s, )   Proof. See [8]. 
  is Hecke zeta-function for the ring of Gaussian 

integers.       Lemma 4. Let . If  f (t) 0
Real and imaginary components of the complex s  

are denoted as := s   and , so st := s = it  . 
T

1
f (t)dt g(T),   

Notation  means a summation over non-

associated elements of , and  means the 

similar relative to multiplication. Notation a  
means that  and 

'

a

[i] '
b

b  are associated, that is 
. But in asymptotic relations  preserve 

its usual meaning. 

a / b { 1, i   } 

where g(T) = T Tlog  , 1  , then  

1T

11

T if = 1logf (t)
I(T) := dt

t T T if >log



 













 
,

1.
 (5) 

Proof. Let us divide the interval of integration into 
parts:  

Letter   denotes Euler–Mascheroni constant. 

Everywhere > 0  is an arbitrarily small number (not 
always the same). 
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N( ) x
log N( ) > Ax'  p

p  k2

k 1T/2
k=0

k k2 2T/2

k 1 k 11
k=0 k=0

Tlog
T / 2 f (t)

I(T) dt <
t

Tlog log
1 g

f (t)dt .
T / 2 T / 2



 





 

  

holds, where 0 < . A < 1

T
(T / 2 )

      Let  be an arbitrarily large Gaussian prime, q

N( ) q 2 . Consider  
l

N( ) N( ) N( ) N( )

r = 1, = .'' 
 
 
p q p q

p  
      Now the lemma's statement follows from 
elementary estimates. 

      Then  and we have  r
kF ( ) = (f (l)) 

Lemma 5. Let  and | d . 

Then we have the following estimates  

T > 10 1/ 2 | 1/ log T 

N( ) N( )

log N( )
r log N( ) = log N( ) > AN( ),'

l





 
p q

q p q (7) 

d iT 4 5
d iT

d iT 4 5
4d iT

ds
(s) T,log

s
ds

L(s, ) T,log
s




















 

log N( ) log f (l)
log F( ) = r log f (l) .

log N( ) l

 
q

 (8) 

      But (7) implies  
log N( )

log A log N( ) < log log log N( ),
l

  q  for growing .  T
Proof. The statement is the result of the application 

of Lemma 4 to the estimates [6]. so log N( ) < log log N( ) log A q . Then it follows 

from (8) that   
Lemma 6. Let > 0  be such value that 

(1/ 2 it) t    as , and let t  > 0  be 

arbitrarily small. Then  

log N( ) log f (l)
log F( ) >

log log N( ) log A l


 

 

and since f(log f (l)) / l > K / 2  and  we have  A < 1
1/2 (1 2 )

2 (1 )

2 (1 ) 2/3

2/3

| t | , [0,1/ 2],

| t | , [1/ 2,1 ],
(s)

| t | | t |, [1 ,1],log

| t |, 1.log

 

 

 



 


 



 





 

  


 




  
f f

log F( )log log N( ) log log N( )
>

log N( ) log log N( ) log A

(K / 2) > K .

  
 

 




  
 

      Secondly, let us show the existence of N( )  such 

that for all n N( )  we have  
      The same estimates are valid for 4L(s, )  also.  

f
log F(n) log log N( )

< (1 )K .
log N( )

 


  Proof. The statement follows from Phragmén—
Lindelöf principle, exact and approximate functional 
equations for (s)  and 4L(s, ) . See [4] and [9] for 

details. 

      Let us choose (0, )   and (0, / (1 ))    . 

Suppose N( ) 3  , then we define  
 1f(1 )K

:= ( ) = , := ( ) = N( ).log
loglog N( )

      



 The best modern result [3] is that 32 / 205   . 

If Riemann hypothesis holds for   and for 4L(s, )  

then   . 
      By choice of   and   we have  

  Kf
f= exp( log ) = exp (1 )(1 )K > e .        

3. Main results. The following theorem generalizes 
Lemma 3 to Gaussian integers; the proof's outline 
follows the proof of Lemma 3 in [8]. 

      Suppose that the canonical expansion of   is  
a b ba1 1 sr

r s1 1p ,  p q q  

where kN( ) p  and kN( ) > q . Then   
Theorem 7. Let  be a multiplicative 

function such that , where 

F : [i]
a ) = f (a)p


F( f (n) n  for 

some > 0 . Then  

r s
k k

1 2a bk kk=1 k=1k k

f (a ) f (b )F( )
= :

N ( ) N ( ) N ( )
  
  


  
p q

= .

k

(9) 

      Since  and  then  
Kf> e f kK (log f (b )) / b

f
n 1

log F( ) log log N( ) log f (n)
= := Klimsup sup

log N( ) n

 
 

.    (6) 
k k k

b b Kk k f kk

f (b ) f (b ) f (b )
< <

bN (q ) e
 

1  
Proof. Let us fix arbitrarily small > 0 . 

      Firstly, let us show that there are infinitely many   
such that  

and it follows that 2 1  . Consider . From the 

statement of the theorem we have 

1

nf (n)  , so  
f

log F( ) log log N( )
> K .

log N( )

  


  
k k

ak kk

af (a )
.

(a )N (p )




 
   

      By definition of  we can choose  such that  fK l

f(log f (l)) / l > K / 2 .       Then  
      It follows from (3) that for  inequality  x 2
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1

1

log log w

log N( )log log log N( ) =

log N( )
o .

log log N( )





 

 









 

 

 �

�  

2(e) (k ka a 2 k 1 5
k

a=0

3 2 3 2( k (k6 7

4 3 2(3k8 9

)/2( )x (1 x)(1 x ) (1 x )

6k 5k)/6 4k 3k)/2(1 x ) (1 x )

26k 57k 34k)/24(1 x ) = 1 O(x ).







   

 

   



   

    

t p

  

      Finally by (9) we get  
 1 2

f f

log F(n) = log n log log =

(1 )K log n ( )K log n
.

log log n loglog n

  
  

 
 

 
 Theorem 10.  

w1/2 k
*k k kT (x) = A x x P (log x)O(x ),

  (14) 

 where  is a polynomial, , 

and  
kP 2

kdeg P = (k k 4) / 2 
      Lemma 8.  

(e)
*k

(e)
k

(e)
*k

(n) n ,

( ) N ( ),

( ) N ( ).









 

 

t

t







   (10) 

2

k 2

k k 1
w =

2k 2k 1

 

 
. 

Proof. Let , 2l = (k k 2) / 2 
l

= (1,2, , 2)a  . 

Identity (11) implies  
Proof. Taking into account trivial estimates 

k (n) n   and  we have that  2
k (n) nt (e)

*k*k
n x

= ( ; ) f , T (x) = T( ;x / n)f (n) 


 a a  (15) 
k k

n 1 n 1
log (n)n < , log (n)n < .sup sup

 
 t  

where  
      Now the estimates (10) follows from Theorem 7 
and Lemma 3. 

2 2d0 1 l

2n x d0 1 l

( ;n) = 1,

d d =n

T( ;x) := ( ;n) = 1,

d d x




 



 

a

a a





 
 
We are ready to provide asymptotic formulas for 

sums of , (e)
*k (n) (e)

k ( )t , (e)
*k ( )t . Let us denote  

(e) (e)s
*k *k*k *k

n n x

(e) (e)s
k kk

N( ) x

(e) (e)s
*k *k*k *k

N( ) x

G (s) := (n)n , T (x) := (n),

F (s) := ( )N ( ), M (x) := ( ),' '

F (s) := ( )N ( ), M (x) := ( ).' '

 

 

 

k  

  












 

 

 

t

t t

and the series 
n=1

f (n)n    are absolutely convergent 

for > 1/ 3 . Due to [5] we have  t  

w1/2 k
1T( ; x) = C x x Q(log x) O(x ),

 a      (16) 

where Q  is a polynomial, , and  deg Q = l 1
      Lemma 9.  

k
2l 1

w =
4l 5




. 2 2(k ( k
*k

4 2( k

4 3 2(5k
*k

k 2)/2 k)/2G (s) = (s) (2s) (3s)

7k 6k)/12(4s)

6k 5k 6k)/24(5s)K (s),

  









   

  

  
2(k kk 1

k

3 2 3 2( k (k

4 3 2(3k
k

)/2F (s) = Z(s)Z (2s)Z (5s)

6k 5k)/6 4k 3k)/2Z (6s) Z (7

26k 57k 34k)/24Z (8s)H (s),







    

  

(11)

      (12) 

      For  we have . k 2 kw > 1/ 3

 
      One can get the following estimates: 

2/3 2/3
1/3

n>x n>x

f (n) f (n)
= O x = O(x ),

n n
 


   




 

 
   (17) 

a a
1/6 1/6

1/2 1/3
n>x n>x

f(n) n f(n) nlog log
=O x =O(x ).

n n
 


   




 

 
  (18) s)

for . a 0
2 2(k ( k

*k

4 2( k

4 3 2(5k
*k

k 2)/2 k)/2F (s) = Z(s)Z (2s)Z (3s)

7k 6k)/12Z (4s)

6k 5k 6k)/24Z (5s)H (s),





   

  

  

(13) 

      Finally, substituting estimates (16), (17) and (18) 
into (15) we get 

1/2
*k 1 1/2

n x n x

w w1/2k k
k k

f (n) f (n)Q(log(x / n))
T (x) = C x x

n n

O(x ) = A x x P (log x) O(x ).
 

 
 

  

 
 

where Dirichlet series  are absolutely convergent 

for  and Dirichlet series for ,  

are absolutely convergent for 

H(s)

s > 1/ 9 *H (s) *K (s)

s > 1/ 6 .  

 
      Lemma 11.  

s s
k k *k

s 1 s 1
res F (s)x / s = C x, res F (s)x / s = C x,
 

*k  (19) Proof. The statements can be verified by direct 
computation of Bell series of corresponding functions. 

For example, Bell series for  have the following 

representation:  

(e)
kt

where  



 
 

CONTEMPORARY PROBLEMS OF NATURAL SCIENCES.  Vol.1 (1), 2014. 

 

 
90

k k
k a

a=2

(a) (a 1)
C = 1

4 N ( )

    


 


p p
,

   (20) 

k k
*k a

a=2

(a) (a 1)
C = 1

4 N ( )

   
  

 


p

t t

p
.   (21) 

Proof. As a consequence of the representation (12) 
we have  

1k k
as

p a=1

k k
as

a=2

F (s) (a)
= 1 (1 )

Z(s) N ( )

(a) (a 1)
1 ,

N ( )



 







  

 

  
   

 

 

 
p

p
p

p

=

 

and so function  is regular in the 

neighbourhood of . At the same time we have 
kF (s) / Z(s)

s = 1

4
s 1 s 1
res Z(s) = L(1, ) res (s) = ,

4

 
 

 

which implies (20). The proof of (21) is similar. 
 

Theorem 12.  
1/2 3 4(k 1)/3

k kM (x) = C x O(x x),log     (22) 

21/2 3 2(k
*k *k

k 2)/3M (x) = C x O(x x),log     (23) 

where  and  were defined in (20) and (21).  kC *kC

Proof. By Perron formula and by (10) for 
,  we have  c = 1 1/ log x log T log x

s 1c iT
k kc iT

1 x x
M (x) = F (s) ds O .

2 i s T









 
   

 
  

      Suppose d = . Let us shift the interval 

of integration to . To do this consider an 

integral about a closed rectangle path with vertexes in 
, ,  and c

1/ 2 1/ log x
[d iT,d iT] 

iT c iT id iT d  T . There are two poles 
in  and  inside the contour. The residue at 

 was calculated in (19). The residue at s =  is 

equal to , D is constant, and will be absorbed by 
error term (see below). 

s = 1
s = 1

s = 1/ 2

1/2

1/ 2

Dx

Identity (12) implies  
k 1

k kF (s) = Z(s)Z (2s)L (s) , 

where  is regular for kL (s) s > 1/ 3 , so for each 

> 0  it is uniformly bounded for s > 1/ 3   . 
Let us estimate the error term using Lemma 5 and 

Lemma 6. The error term absorbs values of integrals 
about three sides of the integration's rectangle. We take 
into account 4Z(s) = (s)L(s, )  . On the horizontal 

segments we have  
sc iT k 1

d iT

k 1 1

[d,c]

1/2 2 1 14(k 1)/3 4/3

x
Z(s)Z (2s) ds

s

Z( iT)Z (2 2iT)x Tmax

x T T xT T,log log






 

 


 



 

 



 





  

It is well-known that  in the 

neighborhood of . So on the vertical segment we 

have the following estimates. Near pole one can 
calculate that 

1(s) (s 1) 
s = 1

sd i 1k 1 1/2 k 1
d 0

11/2 1/2 k 1
k 10

x
Z(s)Z (2s) ds x (2d 2it)dt

s
dt

x x xlog
| it 1 / log x |


  








 



 

  ,
 

and for the rest of the vertical segment we get 

 

sd iT k 1

d i

1/4T T4 4
41 1

1/2T 2(k 1)
1

1/21/2 5 8(k 1)/3 1

1/2 3 4(k 1)/3

x
Z(s)Z (2s) ds

s

dt dt
| (1/ 2 it) | | L(1/ 2 it, ) |

t t

dt
| Z(1 2it) |

t

x T Tlog log

x T.log

 

 




 

 

    
 

  
 





 









 



 

      The choice 1/2T = x   finishes the proof of (22). 
 
      The proof of (23) is similar, but due to (13) one 

have replace k 1  by . 2
(k k 2) / 2 
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