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The analogue of the well-known problem of K.Borsuk on the decomposition of a bounded subset of R^n_W in n+1 
parts of smaller diameter is considered. The sufficient condition for the possibility of such decomposition is obtained. 
The presented results significantly extend the known class for which the conjecture of K.Borsuk is valid. 
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ОТОБРАЖЕНИЕ ГАУССА В ОБОБЩЕНИИ ГИПОТЕЗЫ БОРСУКА НА НЕКОТОРЫЕ 
БАНАХОВЫ ПРОСТРАНСТВА 

Иванов А.Ю. 

В работе рассматривается аналогия известной гипотезы К.Борсука о разложении ограниченного 
подмножества R^n_W на n+1 часть с меньшими диаметрами. Получено достаточное условие возможности 
такой декомпозиции. Представленные результаты существенно расширяют известный класс, для которого 
гипотеза Борсука верна.  

 
КЛЮЧЕВЫЕ СЛОВА: гипотеза Борсука, Банаховы пространства, отображение Гаусса. 
 
 

ВІДОБРАЖЕННЯ ГАУСА В УЗАГАЛЬНЕННІ ГІПОТЕЗИ БОРСУКА НА ДЕЯКІ  
БАНАХОВІ ПРОСТОРИ 

Іванов А.Ю. 

 В роботі розглядається аналогія відомої гіпотези Борсука о розкладенні обмеженої підмножини R^n_W на 
n+1 частину з мешьшими діаметрами. Отримано достатнью умову можливості такої декомпозиції. Отримані 
результати істотно розширюють відомий клас, для якого гіпотеза Борсука вірна.  
 
КЛЮЧОВІ СЛОВА: гіпотеза Борсука, Банахові простори, відображення Гауса. 

 
 

 
1.Introduction. One of the central problems in 
combinatorial geometry is a problem of decomposition 
of figures into parts of smaller diameter. This problem 
is known as Borsuk’s problem. In 1933, K. Borsuk 
advanced the following hypothesis.  

      Borsuk’s hypothesis 1. For a given set of 
diameter , there exist the subsets K each 

of which has a diameter smaller than , and they form 
a covering . 
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Hypothesis proved in  by K.Borsuk at 1933 

[1,2] and in  by H.Eggleston in 1955[3], later by 
B.Grunbaum [4], A. Heppes [5] in 1957. To obtain 
their results K.Borsuk, B.Grunbaum and A. Heppes 
used the only geometrical methods. 

2R
3R

However, in spaces with dimension more than 
three there are no results without conditions on set. 
Because of the fact that the given approach turned out 
unsuitable for the derivation of a final positive or 
negative answer. At 1991 J. Kahn and G. Kalai 
constructed the first counterexample to the hypothesis 

[6]. They showed that, for all dimensions more than 
2014, there exists a figure for which Borsuk’s 
assumption is erroneous. Then a series of works 
concerning the construction of counterexamples in the 

spaces  with lower dimensions. The last result in 
this direction was obtained by A. Hinrichs and C. 
Richter for [7]. 

nR

n 298
In this connection, the description of sets for which 

the given partition is valid becomes of primary 
importance. There are many results in this direction of 
development of the problematic. The first one of this 
sequence was the theorem of H. Hadwiger which was 
obtained in 1946 [8]. 

      Theorem 1.1. Any convex body from that has a 
smooth boundary can be divided into  parts of 
smaller diameter. 

nR
n 1

It is seen from this assertion that namely the 
irregular points on the boundary of a set create the 
greatest difficulty for the partition into parts with  
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smaller diameters. To obtain this result Hadwiger used 
a spherical Gauss map. He put into correspondence the 

sphere  with the smooth boundary of a set 

. Then, he divided  to the  parts of 
smaller diameter and thanks to the antipodal property 
of the spherical Gauss map received a required 
decomposition of G . Note that this method was used 

Eggleston to confirm the hypothesis in  
unconditionally.  

1nS
nRG  1nS 1n
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The main results for sets with nonsmooth boundary 
are obtained  by R. Anderson and Klee [9] in 1952, and 
then V. Boltyanskii [10] in 1960. This was followed by 
a series of partial results. In 2011 we significantly 
extended results of V.Boltyanskii by using mapping of 
the Gauss type with the antipodal property [11]. 

Also investigated extensions of the Borsuk’s 
problem to the spaces with non-Euclidean metric. For 
the subsets of a two-dimensional normalized space 
whose unit ball is a parallelogram, this problem was 
solved by B. Grunbaum [12] and by V. Boltyanskii and 
V. Soltan [13] for any two-dimensional normalized 
space. In author’s work [14] strong sufficient 

conditions in  space with norm nR 
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In this article we try to generalize methods 
obtained in author’s works [11,14] to the -
dimensional banach spaces. We will construct a norm-
forming set which make applying our methods. 

n

2.Main result. Let us construct a vector space  

with the norm generated by the set W . For this we 
define the Minkowski functional as follows: 

n
WR

n
r
x

W RxWrxF  },0inf{)( ,      

and if for some value of  such infimum does not 
exist, then  is considered equal to infinity. Let also 

the Minkowski  functional takes finite positive 

values for all  unequal to zero. Then  

specifies the norm 

nRx

WF

WF

Rx n
WF

W
  in a linear vector space, 

moreover W  is the unit ball in this space[15]. 
Let us introduce a function GW : , where 

— the unit sphere in , is a set of constant 

width. For 

W n
WR G

W , assume  

,)( x where diamGyxGyx
W

 ,,  

and  
diamGyx                      (1) 

      Thus yx,  are points at which attained the diameter 

of . This function is an analogue of the spherical 
Gauss map. But if the Gauss map is the only 
meaningful for sets with smooth boundary, then the 
function is defined for any set of constant width. 

G

Also, we need a function to count the number of 
diameters that pass through a given point. Let 

}{:  ZG  where  is the set of non-

negative integers, and G is a set of constant width. For 
all 

Z

Gx , assume )(x  to be equal the number of 

diameters that pass through x . Let us agree )(x , 

if from x  pass infinity diameters. 
Below the main result of the work is presented. 

      Theorem 2.1. Let  be a closed strictly 
convex centrally symmetric set, and suppose that the 
Minkowski  functional takes finite positive values 

for all 

nW R

WF
nRx  unequal to zero. Let  be the space 

with the norm formed by the functional . 

n
WR
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Let also  be a set of constant width, n
WG R

EP(G) {x x G : (x) }    ,   a set of all 

connected components of 

L

{ ( ) EP}    . In 

addition, there are the following conditions: 
1) for all U L , 

W Wx,y W,
inf

( 0, U
sup x y

  x,y)
  

 
      

   
for some 0   independent of U; 

2) if U,V L , U \ V    and , where V \ U  

V { }  V   , then in .  t(V) U 
Then  can be divided into  parts of smaller 
diameter. 

G n 1

To prove Theorem 2.1, we construct a system of 
1n  subsets covering  each of which have 

diameter less then . Next we apply the function 
W

diamW
  defined in (1). Thus we construct a system of 1n  

subsets covering G  each of which has the diameter 
less then . Of course not every system of 
subsets of W  has this property. But the methods of 
their construction which are represented in work [14] 
allow us to obtain needed system of subsets of 

diamG

G . 
Let us agree to call the set which can be divided 

into n+1 parts of smaller diameter as  Borsuk's set. The 
theorem 2.1 shows that the class of Borsuk’s sets in 

 spaces no less than in the classical space  with 

Euclidean metric. So, as a consequence of this theorem 
we can obtain the results by Hadwiger and by 

Boltyansky on  spaces. 

n
WR nR

n
WG R

n
WR

Corollary 2.1. Let  be a closed strictly 

convex centrally symmetric set. Any set  of 

constant width that has a smooth boundary can be 
divided into 

nRW 

n 1  parts of smaller diameter. 

Corollary 2.2. Let  be a closed strictly 

convex centrally symmetric set. Any set  of 

constant width that has no more than  irregular 
points in the boundary can be divided into 

nRW 
n
WG R

n 1
n

  parts 
of smaller diameter. 

To prove corollary 2.1 it suffices to note that 
EP(G)    for constant width set’s with a smooth 

boundary. This means that conditions 1 and 2 of 
Theorem 2.1 are performed automatically. 
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To prove corollary 2.2 it important to note that all 
the points of the set  must be isolated. This 

means that for all , one has 

EP(G)

LU
 

W
, U
sup A(W)

 
 


  , 6. Kahn J., Kalai G. A counterexample to Borsuk’s 

conjecture. Bull. Amer. Math. Soc. (New Ser.) – 1993. 
– v. 29, N 1. – P. 60–62. where Wx,y W,(x,y) 0

A(W) inf x y
 

  . For example, 

for , in the classical Euclidean space , 

 and 

n 1W S  
W) 1

nR

A(
n 1 W

x,y S ,(x,y) 0
inf x y 2
 

  . 

7. Hinrichs A., Richter C. New sets with large 
Borsuk numbers. http: www.minet.uni-jena.de/hinrichs/ 
paper/18/borsuk.pdf. 
8. Hadwiger H. Uberdeckung einer Menge durch 
Mengen kleineren Durchmessers.  Comm. Math. Helv. 
– 1945/46. – v.18. P. 73–75. Nevertheless, due to the restrictions imposed on the 

set  in Theorem2.1, it seems an artificial result of 
this statement. This is partly true. Generally, for an 
arbitrary Banach spaces the imbedding G  is 

incorrect for some , where 

 and  is a set of constant 

width. This question is considered in details in [16] by 
H. Eggleston. However, we are not seen quite an 
arbitrary Banach space, but the space in which the 
normforming set is closed, strictly convex, and 
centrally symmetric. For spaces of this type the 
imbedding  which we have discussed above 
becomes true, if  satisfies an additional condition 
presented in [17] by R. Karasev. 
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