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      Flow instability in the distensible tubes is studied in application to the blood flow and wave propagation in the blood 
vessels as multi-layer viscoelastic tubes. The axisymmetric disturbance and the no displacement boundary conditions 
corresponding to the deep vessels attached to the surrounding tissues are considered. It was shown the unstable fluid-
based mode can be stabilized by certain choice of the viscosity and elastic modules of the layers at wise range of the 
Reynolds numbers. 
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СТАБИЛИЗАЦИЯ ТЕЧЕНИЙ ЖИДКОСТИ ПО МНОГОСЛОЙНЫМ ВЯЗКОУПРУГИМ ТРУБКАМ  

ПРИ УСЛОВИИ ЗАКРЕПЛЕНИЯ ИХ ВНЕШНЕЙ ПОВЕРХНОСТИ 

Чистина Э.О., Кизилова Н.Н. 

      Неустойчивость течений жидкости в податливих трубках изучается в применении к течению крови и 
распространению пульсових волн в кровеносных сосудах как многослойных вязкоупругих трубках. 
Рассматривается случай осесимметричных возмущений и условий закрепления внешней поверхности трубки, 
что соответствует глубоким артериям, которые прикреплены к окружающим тканям. Показано, что в широком 
диапазоне чисел Рейнольдса неустойчивая жидкостная мода может быть стабилизирована путем выбора 
определенных значений вязкости и модулей упругости слоев стенки. 
 
КЛЮЧЕВЫЕ СЛОВА: взаимодействие жидкость-стенка, неустойчивость течения, распространение волн, 
кровеносные сосуды. 
 
 

СТАБІЛІЗАЦІЯ ТЕЧІЙ РІДИНИ КРІЗЬ БАГАТОШАРОВІ В'ЯЗКОПРУЖНІ ТРУБКИ  
ЗА УМОВОЮ ЗАКРІПЛЕННЯ ЇХ ЗОВНІШНЬОЇ ПОВЕРХНІ 

Чистіна Е.О., Кізілова Н.М. 

      Нестійкість течій рідини в податливих трубках вивчається в застосуванні до течії крові і поширенню 
пульсових хвиль в кровоносних судинах як багатошарових в'язкопружних трубках. Розглядається випадок 
вісесиметричних збурень і умов закріплення зовнішньої поверхні трубки, що відповідає глибоким артеріям, які 
прикріплені до навколишніх тканин. Показано, що в широкому діапазоні чисел Рейнольдса нестійка рідинна 
мода може бути стабілізована шляхом вибору певних значень в'язкості та модулів пружності шарів стінки. 
 
КЛЮЧОВІ СЛОВА: взаємодія рідина-стінка, нестійкість руху, розповсюдження хвиль, кровоносні судини. 
 
 
1. Introduction. Fluid-structure interaction (FSI) is an 
important factor in the biofluid flows like blood motion 
in the arteries, capillaries and veins as well as in the 
distensible tubes of biomedical and technical systems 
[1–4]. When any disturbance of the flow and the 
produced variations in the hydrodynamic pressure and 
wall shear stress influence the stress distribution and 
wall movement and vice versa, there is a strong FSI 
between the fluid and solid. FSI and instability of the 
fluid flows in the compliant ducts have been thoroughly 
studied in application to the technical fluid-conveying 
systems, blood and urine flows through the vessels, air 
flow in the airways and other biosystems [5]. Instability 
of the steady flow of a viscous incompressible liquid 

near the compliant wall may produce wall oscillations, 
flow and pressure limitation phenomena, noise 
generation, fatigue of the wall material, and even 
destruction of the device. The wall oscillations are 
supported by the energy transfer from the fluid to solid 
at the interfaces [6]. Delay in the onset of the instability 
and laminar to turbulence transition, and stabilization of 
the unstable modes pose a challenging problem to both 
theoretical mechanics and mechanical engineering.  

Flow stability in the isotropic compliant tubes has 
been in-depth studied in experiments and numerical 
computations on 1D and 2D mathematical models [6–
11]. Though many physical and physiological 
phenomena of the flow instability in collapsed and non-  
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collapsed tubes are explained, the problem is still of 
great interest in relation to different technical and 
biomedical applications, especially from the standpoint 
of sound generation and flow control in biological 
organisms and technical devices. In some cases the flow 
instability favours the transport efficiency, mixing of 
biological suspensions and polymers, and sound 
generation for communication between the organisms. 

where f  and ( j)
w  are the mass densities of the fluid 

and solid layers, j = 1,2,3 correspond to the inner, 
medium and outer layers accordingly,  and v


f  are the 

fluid velocity and viscosity, ( j)u  is the wall 

displacement, p and ( j)p  are the hydrostatic pressures in 

the fluid and solid layers, ̂ and ( jˆ )  are the 
corresponding stress tensors.        Flow-induced vibrations of arteries and veins can be 

detected by acoustic sensors on the human body over 
the superficial blood vessels and the problem in 
recognition of the pathological and the so-called 
innocent noise is and important problem of medical 
diagnostics [12]. Different problems of the flow 
instability in the blood vessels as multilayer tubes have 
been studied on the mathematical model of the 
stationary incompressible axisymmetric flow in a 
circular three-layer visocelastic tube at no displacement 
[13] and no stress [14] boundary conditions at the outer 
surface of the tube. It was found the unsteady fluid-
based modes can be stabilized by the viscosity of the 
middle layer [13] and rigidity of the inner or outer layer 
[14]. In the both cases the sandwich-type material for 
the wall stabilizes the system. In this paper the 
possibility of the flow stabilization at the no 
displacement boundary conditions at wide variation of 
the Reynolds number within the physiological limits of 
the material parameters is studied. 

The viscoelastic body with parallel connection of 
the elastic and viscous properties (Voight model) has 
been considered for the wall layers: 

( j) ( j) ( j) ( j)( j)
wi ik kA
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where ( j)
w  and  are the viscosity and matrix of 

elasticity coefficients, 
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ikA
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 is 

the stress vector, and ( j)  is the similar strain vector.  

The boundary conditions are the velocity and stress 
continuity conditions at the fluid-solid and solid-solid 
interfaces: 
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(1) (2) 1 2 1 2
1 n nr R h : u u , ,         

     
         (5) 2. Problem formulation  

Stability of the Poiseuille flow of a viscous 
incompressible fluid in a multi-layer viscoelastic tube is 
considered. The wall is composed of three non-isotropic 
layers with thicknesses , where 

 is the wall thickness, R and L are the 

inner radius and length of the tube (Fig.1). The outer 
surface of the tube r=R+h is tethered to the surrounding 
media which is supposed to be rigid.   

1 2 3h ,h ,h

1 2 3h h h h  

 
Fig1. Coordinate system and 3d model of the tube. 

 
      The incompressible Navier-Stokes equations 
governing the fluid flow are 
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and the mass and momentum conservation equations for 
the incompressible wall are 
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and the no displacement boundary condition at the outer 
surface of the tube  

(3)r R h : u 0,  


                                               (7) 

where n and τ denotes the normal and tangential 
components of the stress tensor. 

The mathematical problems (1)–(2) and (3)–(4) are 
coupled via the boundary conditions (4)–(7) and 
solution of the FSI problems (1)–(7) can be found as a 
superposition of the steady flow and small axisymmetric 
disturbance in the form of the normal mode [10–14]: 
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where v


, ( j)u 
, p , ( j)p   are the amplitudes of the 

corresponding disturbances, , r ik k ik  r is s is 

rs

, 

 is the wave frequency,  is the wave number,  

and  are temporal and spatial amplification rates. The 

steady part 

is rk

ik

 **v , p


 of (8) is identified with Poiseuille 

flow.  
      The stable and unstable modes as well as the 
dependencies of the group velocities, spatial and 
temporal amplification rates on the model parameters 
have been computed using the numerical procedure 
developed in [10–14].  
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3. Computational results and discussions. The system 

parameters , , v
  ( j)u  p , ( j)p  are determined by the 

material constants, the non-dimensional parameter 
*
x fv / E*   which is the ratio of the fluid to wall 

inertia forces [13], and flow regime described by the 

Reynolds number Re= *
f xv R / f  .  The parameter   

can be re-written in the form *
x wv / (c )   where 

is the wave velocity in the elastic wall, wc

w / f   is the relative density of the wall.  

       The blood vessel wall exhibits viscoelastic 
transversal isotropic properties with different Young 
modules and Poisson ratios in the longitudinal and 
tangential directions. It is important that the tree layers 
may have different material parameters either in the 
normal state or at the pathology (see the detailed review 
in [13]). The inner layer is the thinner one but its 
thickness can be significantly increased by local 
hemodynamic factors and arterial blood pressure that 
influence the endothelial function and penetration of 
potentially atherogenic particles, developing intimal 
fibrosis and atheroma. Therefore, the relative thickness 
h1/h can vary between 2–3% and 30–40%. Medium 
layer thickening is observed at atherosclerosis, 
hypertension, and wall remodeling caused by local 
hydrodynamic and global biochemical factors from 25–
30% to 40–50%. The remodeling depends on type and 
location of the wall and can be directed outward and 
inward resulting in the narrowing or enlarging the 
external diameter of the artery [16]. 
Hypertrophic/hypotrophic remodeling is characterized 
by increased/decreased wall-to-lumen ratio. The 
intermediate eutrophic remodeling is characterized by 
changes in the vessel diameter at constant wall-to-lumen 
ratio. In that way the relative thicknesses hj/h may vary 
in quite wide physiological ranges that have been taken 
into account at the computations. 
      Characteristic elastic modulus for the wall layers is 
E*~105–106 Pa for the normal elastic and muscle type 
arteries while in the cases of the atherosclerotic plaque 
and calcium accumulation in the wall the local rigidity 
may be higher E*~107–108 Pa [13]. Both isotropic and 
transversely isotropic materials for the wall layers have 

been studied. In that way the matrix  has been 

introduced in the form 
ikA

 

1 1 1
2 2 2 2 2

1 1 1
2 2 1 1 1

1 1 11 2 2 1 1 1
ik 1

2
1

1
1

1

(E ) (E ) (E ) 0 0 0

(E ) (E ) (E ) 0 0 0

(E ) (E ) (E ) 0 0 0
A

0 0 0 (G ) 0 0

0 0 0 0 (G ) 0

0 0 0 0 0 (G

 

 

 

  

  

  





)

  

 


 
 











      When E1=E2, G1=G2, 1 2  for each layer j=1,2,3,  

the wall is isotropic, while when those values are equal 
in different directions but different for the layers, the 
wall in anusotropic in the radial direction. In this study 
two types of anisotropy have been considered: { 
E1=2E*, E2=20E*} and {E1=20E*, E2=2E*} that 

corresponds to more pronounced circumferential and 
longitudinal rigidity correspondingly.  
      According to numerical computations at different 
boundary conditions [13–15], the Poisson ratio does not 
influence the unstable modes and group velocity and 

can be accepted as ( j) ~0.4–0.5 depending on the size 
and wall thickness of the artery. The medium and small 
arteries are practically incompressible while the larger 
ones possess some compressibility due to developed 
system of the small blood vessels vasa vasorum 
supplying the muscle cells in the medium layer.  
      Other material parameters have been chosen 
according to physiological data in normalcy and 
pathology within the following ranges  

3
f 1050 1100 kg / m   , ( j)

w f(0.9 1.3)   , f = 

(1.5–20) ·10-3 Pa·s, w =0.01–1 Pa·s, h/R=0.15–1.5.  

       By varying the set of material properties of the wall 
layers, one can either increase or reduce the 
conductivity of the system in relation to the stationary 
and wave flow. As it was shown by the numerical 
calculations [13–15], the viscosity and shear modules of 
the wall layers have the most significant impact on the 
absolute and convective instability of the system. Here 
the computational results of the influence of the wall 
viscosity on the temporal amplification rate at 

different Re numbers are presented in Fig.2 at 
rs

1  . 
The non-dimensional wall viscosity w / f  

rs ( )

 is 

varied from zero (purely elastic wall) to the values when 
asymptotic behavior of the dependence   becomes 

clear. In Fig.2 the dependencies rs ( ) are plotted at 

[0,3]  highlighting the transition from the elastic to 

viscoelastic wall and showing the influence of the wall 
viscosity on the system stability. When is positive the 

system exhibits temporal instability with exponentially 
increased amplitudes of the disturbances. The Re 
number varied as Re=0–500 but the curves  

rs

rs ( )  are 

presented in Fig.2 at Re=10–40 only to demonstrate the 
tendency of the system stability at relatively low Re 
numbers.  
      As it is shown in Fig.2, the fluid-filled elastic tube 
possess one unstable mode with and this 

mode can be stabilized by increase of the viscosity of 
the second layer (Fig.2c) or all three layers 
simultaneously (Fig.2a). It is clear that stabilization is 
provided by viscosity of the middle layer because the 
inner (Fig.2b) and outer (Fig.2d) layers do not stabilize 
to system at Re<50. The stabilization can be achieved at 
any Re number by any viscosity of the inner layer 

rs 0.56...

0.1 

]0.1,

 (Fig.2c), while when all the layers become 

viscous the stabilizing effect of the middle layer prevail 
over the destabilizing effects of the outer and inner 
layers within short range of the relative viscosity values 

2[ depending on the Re numbers (Fig.2a).  

      The same dependencies for the higher Re numbers 
Re=50–200 are presented in Fig.3. Note the studied 
values of the Reynolds numbers provide stable steady 
flow in the rigid tube (Poiseuille flow) and the 
instability is connected with improper combination of  
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Fig.2. Temporal amplification rate of the most unstable mode 
versus the viscosity of the three (a), inner (b), medium (c) and 

outer (d) layers  at Re = 10, 20, 30, 40. 

Fig.3. Temporal amplification rate of the most unstable mode 
versus the viscosity of the three (a), inner (b), medium (c) and 

outer (d) layers  at Re = 50, 100, 150, 200.  
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 the fluid and solid properties and FSI that may promote 
rapid spatial and temporal growth of any small 
disturbance. 

 
a 

 
b 

 
c 

 
d 

      It is also shown the dependence r 2s ( )  is 

monotonously decreasing and provides fast stabilization 
of the system while the dependencies r 1s ( ) and 

r 2s ( )  becomes negative with increasing the 

corresponding viscosity within certain region of the 
viscosity, though the region becomes larger when Re 
increases and Re  60 for the inner layer (Fig.3b), 
Re 120 for the outer layer (Fig.3d). In the case of the 
isotropic wall the combination of the stabilizing effect 
of the viscosity of the middle layer and destabilizing 
influence of the viscosity of the outer and inner layer 
leads to stabilization at wide ranges of the relative 
viscosity depending on the Re number (Fig.3a). 




      In that way it was shown that the sandwich-type 
materials composed by the elastic layers with a 
viscoelastic layer in between [13–15], are excellent 
candidates for the flow stabilizing coatings in the 
compliant tubes at a wide range of the Reynolds 
numbers.   
       The influence of the non-dimensional parameter Γ  
in the flow stabilization by the viscosity of different 
layers is presented in Fig. 4 for Re=10. The stabilization 
influence of the viscosity of the middle layers still exists 
and even becomes more pronounced while Γ increases, 
though the destabilizing effect of the inner and outer 
layers also increases for the higher values of Γ. As a 
result, the net stabilizing effect of the viscosity of the 
three layers appear within the more and more narrow 
ranges of μ while Γ increases. The same regularities 
have been found at the higher Reynolds numbers 
Re=10–500. Increased Re number enhances the 
successful range of the wall viscosities stabilizing the 
system, while increased Γ acts in the opposite direction, 
so at any set of the non-dimension parameters {Re, Γ } 
governing the flow the physically reasonable values of 
the wall viscosities μ1,2,3  can be found for the flow 
stabilization purposes. 

4. Conclusions. 
It was shown that the system instability strongly 
depends on the rheological properties of the fluid and 
wall. The rigidities and viscosities of the wall layers 
produce the most prominent effects on the temporal 
amplification rates of the unstable mode. At different 
flow regimes the unstable fluid-based mode can be 
stabilized by an increase in the viscosity of the inner 
layer of all three layers of the wall.  In means, the mode 
can be damped by the viscous wall or the sandwich-type 
coating composed by a viscous layer located between 
two elastic layers with low viscosities. The effect is kept 
within the range of low and intermediate Re=10–500. It 
is proved at any flow regimes and fluid rheology a 
successful set of material parameters of the layers 
stabilizing the system can be found for either  isotropic 
or transversely isotropic wall. The obtained results can 
be used for detailed understanding the wall remodeling 
of the blood vessels directed to the flow stabilization at 
some stages of development of the vascular pathology, 

 
Fig. 4. Temporal amplification rate of the most unstable mode 
versus the viscosity of the three (a), inner (b), medium (c) and 

outer (d) layers  at G=5,10,15,20 and Re=10. 
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as well as for the flow stabilization in distensible tubes 
of different industrial and biomedical devices. 
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